3,562 research outputs found

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF
    Primary liver cancer, consisting primarily of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a heterogeneous malignancy with a dismal prognosis, resulting in the third leading cause of cancer mortality worldwide [1, 2]. It is characterized by unique histological features, late-stage diagnosis, a highly variable mutational landscape, and high levels of heterogeneity in biology and etiology [3-5]. Treatment options are limited, with surgical intervention the main curative option, although not available for the majority of patients which are diagnosed in an advanced stage. Major contributing factors to the complexity and limited treatment options are the interactions between primary tumor cells, non-neoplastic stromal and immune cells, and the extracellular matrix (ECM). ECM dysregulation plays a prominent role in multiple facets of liver cancer, including initiation and progression [6, 7]. HCC often develops in already damaged environments containing large areas of inflammation and fibrosis, while CCA is commonly characterized by significant desmoplasia, extensive formation of connective tissue surrounding the tumor [8, 9]. Thus, to gain a better understanding of liver cancer biology, sophisticated in vitro tumor models need to incorporate comprehensively the various aspects that together dictate liver cancer progression. Therefore, the aim of this thesis is to create in vitro liver cancer models through organoid technology approaches, allowing for novel insights into liver cancer biology and, in turn, providing potential avenues for therapeutic testing. To model primary epithelial liver cancer cells, organoid technology is employed in part I. To study and characterize the role of ECM in liver cancer, decellularization of tumor tissue, adjacent liver tissue, and distant metastatic organs (i.e. lung and lymph node) is described, characterized, and combined with organoid technology to create improved tissue engineered models for liver cancer in part II of this thesis. Chapter 1 provides a brief introduction into the concepts of liver cancer, cellular heterogeneity, decellularization and organoid technology. It also explains the rationale behind the work presented in this thesis. In-depth analysis of organoid technology and contrasting it to different in vitro cell culture systems employed for liver cancer modeling is done in chapter 2. Reliable establishment of liver cancer organoids is crucial for advancing translational applications of organoids, such as personalized medicine. Therefore, as described in chapter 3, a multi-center analysis was performed on establishment of liver cancer organoids. This revealed a global establishment efficiency rate of 28.2% (19.3% for hepatocellular carcinoma organoids (HCCO) and 36% for cholangiocarcinoma organoids (CCAO)). Additionally, potential solutions and future perspectives for increasing establishment are provided. Liver cancer organoids consist of solely primary epithelial tumor cells. To engineer an in vitro tumor model with the possibility of immunotherapy testing, CCAO were combined with immune cells in chapter 4. Co-culture of CCAO with peripheral blood mononuclear cells and/or allogenic T cells revealed an effective anti-tumor immune response, with distinct interpatient heterogeneity. These cytotoxic effects were mediated by cell-cell contact and release of soluble factors, albeit indirect killing through soluble factors was only observed in one organoid line. Thus, this model provided a first step towards developing immunotherapy for CCA on an individual patient level. Personalized medicine success is dependent on an organoids ability to recapitulate patient tissue faithfully. Therefore, in chapter 5 a novel organoid system was created in which branching morphogenesis was induced in cholangiocyte and CCA organoids. Branching cholangiocyte organoids self-organized into tubular structures, with high similarity to primary cholangiocytes, based on single-cell sequencing and functionality. Similarly, branching CCAO obtain a different morphology in vitro more similar to primary tumors. Moreover, these branching CCAO have a higher correlation to the transcriptomic profile of patient-paired tumor tissue and an increased drug resistance to gemcitabine and cisplatin, the standard chemotherapy regimen for CCA patients in the clinic. As discussed, CCAO represent the epithelial compartment of CCA. Proliferation, invasion, and metastasis of epithelial tumor cells is highly influenced by the interaction with their cellular and extracellular environment. The remodeling of various properties of the extracellular matrix (ECM), including stiffness, composition, alignment, and integrity, influences tumor progression. In chapter 6 the alterations of the ECM in solid tumors and the translational impact of our increased understanding of these alterations is discussed. The success of ECM-related cancer therapy development requires an intimate understanding of the malignancy-induced changes to the ECM. This principle was applied to liver cancer in chapter 7, whereby through a integrative molecular and mechanical approach the dysregulation of liver cancer ECM was characterized. An optimized agitation-based decellularization protocol was established for primary liver cancer (HCC and CCA) and paired adjacent tissue (HCC-ADJ and CCA-ADJ). Novel malignancy-related ECM protein signatures were found, which were previously overlooked in liver cancer transcriptomic data. Additionally, the mechanical characteristics were probed, which revealed divergent macro- and micro-scale mechanical properties and a higher alignment of collagen in CCA. This study provided a better understanding of ECM alterations during liver cancer as well as a potential scaffold for culture of organoids. This was applied to CCA in chapter 8 by combining decellularized CCA tumor ECM and tumor-free liver ECM with CCAO to study cell-matrix interactions. Culture of CCAO in tumor ECM resulted in a transcriptome closely resembling in vivo patient tumor tissue, and was accompanied by an increase in chemo resistance. In tumor-free liver ECM, devoid of desmoplasia, CCAO initiated a desmoplastic reaction through increased collagen production. If desmoplasia was already present, distinct ECM proteins were produced by the organoids. These were tumor-related proteins associated with poor patient survival. To extend this method of studying cell-matrix interactions to a metastatic setting, lung and lymph node tissue was decellularized and recellularized with CCAO in chapter 9, as these are common locations of metastasis in CCA. Decellularization resulted in removal of cells while preserving ECM structure and protein composition, linked to tissue-specific functioning hallmarks. Recellularization revealed that lung and lymph node ECM induced different gene expression profiles in the organoids, related to cancer stem cell phenotype, cell-ECM integrin binding, and epithelial-to-mesenchymal transition. Furthermore, the metabolic activity of CCAO in lung and lymph node was significantly influenced by the metastatic location, the original characteristics of the patient tumor, and the donor of the target organ. The previously described in vitro tumor models utilized decellularized scaffolds with native structure. Decellularized ECM can also be used for creation of tissue-specific hydrogels through digestion and gelation procedures. These hydrogels were created from both porcine and human livers in chapter 10. The liver ECM-based hydrogels were used to initiate and culture healthy cholangiocyte organoids, which maintained cholangiocyte marker expression, thus providing an alternative for initiation of organoids in BME. Building upon this, in chapter 11 human liver ECM-based extracts were used in combination with a one-step microfluidic encapsulation method to produce size standardized CCAO. The established system can facilitate the reduction of size variability conventionally seen in organoid culture by providing uniform scaffolding. Encapsulated CCAO retained their stem cell phenotype and were amendable to drug screening, showing the feasibility of scalable production of CCAO for throughput drug screening approaches. Lastly, Chapter 12 provides a global discussion and future outlook on tumor tissue engineering strategies for liver cancer, using organoid technology and decellularization. Combining multiple aspects of liver cancer, both cellular and extracellular, with tissue engineering strategies provides advanced tumor models that can delineate fundamental mechanistic insights as well as provide a platform for drug screening approaches.<br/

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Investigating the Innate Immune Systems of Bats and Their Roles as Zoonotic Viral Reservoirs

    Get PDF
    The zoonotic spillover of viral pathogens from wild animal reservoirs into human populations remains the leading cause of emerging and re-emerging infectious diseases globally. Bats represent important viral reservoirs, notorious for the diversity and richness of the viruses they host, several of which are highly pathogenic when transmitted to humans. Remarkably, bats appear to host an abundance of these viruses without exhibiting any clinical signs of disease. A dominant hypothesis for this ability suggests that bats can control viral replication early in the innate immune response, which acts as the first line of defence against infection. However, bat immunology remains fundamentally understudied, largely due to their high species diversity and the lack of accessible reagents required for bat research. Therefore, in this work we explored and characterised key components of bat innate immunity to gain a better understanding of bats as viral reservoirs and contribute to the currently limited literature. Here, we demonstrated the in vitro transcriptomic response of the bat model species, Pteropus alecto (P.alecto) upon stimulation with the bat henipavirus Cedar virus and also with a type III bat interferon (paIFNλ). These investigations highlighted key transcripts, some of which were immune-related, in the response of bats to the separate stimuli and presents a foundation for further research into significant genes concerned in bat viral infection. Building from genome-wide transcriptomics, three distinctive bat innate immune genes representative of different stages of interferon signalling were selected for comparative genomics and functional characterisation. Our work demonstrated the conservation of genes between bats and humans, including IRF7, IFIT5 and IFI35. Specific findings for IRF7 included its successful translocation to the cell nucleus upon stimulation. IFIT5 and IFI35 were specifically selected for exploration due to previous research demonstrating the respective antiviral and conflicting anti- or pro-viral roles of these genes in humans. Significantly, our research demonstrated the direct antiviral action of P.alecto IFIT5 against negative-sense RNA viruses. Collectively, our findings offer valuable contributions to the field of bat antiviral immunity and provide the framework for future investigative studies into the role and function of the bat innate immune system and bat viral tolerance mechanisms

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Multiplexed High-Resolution Imaging Approach to Decipher the Cellular Heterogeneity of the Kidney and its Alteration in Kidney Disease and Nephrolithiasis

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Kidney disease and nephrolithiasis both present a major burden on the health care system in the US and worldwide. The cellular and molecular events governing the pathogenesis of these diseases are not fully understood. We propose that defining the cellular heterogeneity and niches in human and mouse kidney tissue specimens from controls and various models of renal disease could provide unique insights into the molecular pathogenesis. For that purpose, a multiplexed fluorescence imaging approach using co-detection by Indexing (CODEX) was used, using a panel of 33 and 38 markers for mouse and human kidney tissues, respectively. A customized computational analytical pipeline was developed and applied to the imaging data using unsupervised and/or semi-supervised machine learning and statistical approaches. The goal was to identify various cell populations present within the tissues, as well as identify unique cellular niches that may be altered with disease and/or injury. In mice, we examined disease models of acute kidney injury (AKI) and in human tissues we analyzed specimens from patients with AKI, IgA nephropathy, chronic kidney disease, systemic lupus erythematosus, and nephrolithiasis. In both mice and humans, the disease and reference samples show similar broad cell populations for the main segments of the nephron, endothelium, as well as similar groups of immune cells, such as resident macrophages and neutrophils. When comparing between health and disease, however, a change in the distribution of few sub-populations occurred. For example, in human kidney tissues, the abundance and distribution of a subpopulation of proximal tubules positive for THY1 (a marker of differentiation and repair), was markedly reduced with disease. Changes observed in mouse tissues included shifts in the immune cell population types and niches with disease. We propose that our analytical workflow and the observed changes in situ will play an important role in deciphering the pathogenesis of kidney disease

    University of Windsor Graduate Calendar 2023 Winter

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1026/thumbnail.jp

    2023-2024 Undergraduate Catalog

    Get PDF
    2023-2024 undergraduate catalog for Morehead State University

    Positron emission tomography imaging biomarkers of frontotemporal dementia

    Get PDF
    There are currently no disease modifying treatments available for frontotemporal dementia (FTD). Pathological heterogeneity within and between FTD phenotypes and genotypes makes accurate diagnosis challenging. Biomarkers that can aid diagnosis and monitor disease progression will be critical for clinical trials of potential treatments. Positron emission tomography (PET) imaging provides insights into molecular changes in the brain during life that are otherwise only directly quantifiable at postmortem. In this thesis I aimed to identify potential biomarkers of FTD using PET imaging. In Chapter 3 I use PET imaging of glucose metabolism to identify early neuronal dysfunction in presymptomatic genetic FTD, revealing specific involvement of the anterior cingulate in a subgroup of mutation carriers. In Chapter 4 I evaluate the utility of a PET tracer of tau protein deposition in genetic FTD against volumetric imaging, which appears to provide a more sensitive biomarker of disease than this tau PET tracer in FTD. In Chapter 5 I investigate neuroinflammation via PET imaging and identify different areas of neuroinflammation in different FTD genotypes, suggesting an association between neuroinflammation and protein deposition and that PET imaging of neuroinflammation might provide a sensitive biomarker in MAPT-related FTD. In Chapter 6 I investigate synaptic and mitochondrial dysfunction via PET imaging in FTD, the latter of which has been previously unexplored. I reveal marked differences in both markers in FTD versus controls which suggests both might provide sensitive biomarkers of disease. Furthermore, in Chapter 7 I evaluate the same biomarkers at longitudinal follow up where I find continued reductions in mitochondrial function over time suggesting mitochondrial PET imaging may provide a biomarker of disease progression in FTD. Future replication of the findings in this thesis in larger cohorts might facilitate the advancement of clinical trials in FTD

    A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease

    Get PDF
    Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers
    • …
    corecore