1,397 research outputs found

    A User Oriented Image Retrieval System using Halftoning BBTC

    Get PDF
    The objective of this paper is to develop a system for content based image retrieval (CBIR) by accomplishing the benefits of low complexity Ordered Dither Block Truncation Coding based on half toning technique for the generation of image content descriptor. In the encoding step ODBTC compresses an image block into corresponding quantizes and bitmap image. Two image features are proposed to index an image namely co-occurrence features and bitmap patterns which are generated using ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two quantizes and bitmap respectively by including visual codebooks. The proposed system based on block truncation coding image retrieval method is not only convenient for an image compression but it also satisfy the demands of users by offering effective descriptor to index images in CBIR system

    Retrieval of Images Using Color, Shape and Texture Features Based on Content

    Get PDF
    The current study deals with deriving of image feature descriptor by error diffusion based block truncation coding (EDBTC). The image feature descriptor is basically comprised by the two error diffusion block truncation coding, color quantizers and its equivalent bitmap image. The bitmap image distinguish the image edges and textural information of two color quantizers to signify the color allocation and image contrast derived by the Bit Pattern Feature and Color Co-occurrence Feature. Tentative outcome reveal the benefit of proposed feature descriptor as contrast to existing schemes in image retrieval assignment under normal and textural images. The Error-Diffusion Block Truncation Coding method compresses an image efficiently, and at the same time, its consequent compacted information flow can provides an efficient feature descriptor intended for operating image recovery and categorization. As a result, the proposed design preserves an effective candidate for real-time image retrieval applications

    A deep locality-sensitive hashing approach for achieving optimal ‎image retrieval satisfaction

    Get PDF
    Efficient methods that enable high and rapid image retrieval are continuously needed, especially with the large mass of images that are generated from different sectors and domains like business, communication media, and entertainment. Recently, deep neural networks are extensively proved higher-performing models compared to other traditional models. Besides, combining hashing methods with a deep learning architecture improves the image retrieval time and accuracy. In this paper, we propose a novel image retrieval method that employs locality-sensitive hashing with convolutional neural networks (CNN) to extract different types of features from different model layers. The aim of this hybrid framework is focusing on both the high-level information that provides semantic content and the low-level information that provides visual content of the images. Hash tables are constructed from the extracted features and trained to achieve fast image retrieval. To verify the effectiveness of the proposed framework, a variety of experiments and computational performance analysis are carried out on the CIFRA-10 and NUS-WIDE datasets. The experimental results show that the proposed method surpasses most existing hash-based image retrieval methods

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Summative Stereoscopic Image Compression using Arithmetic Coding

    Get PDF
    Image compression targets at plummeting the amount of bits required for image representation for save storage space and speed up the transmission over network. The reduction of size helps to store more images in the disk and take less transfer time in the data network. Stereoscopic image refers to a three dimensional (3D) image that is perceived by the human brain as the transformation of two images that is being sent to the left and right human eyes with distinct phases. However, storing of these images takes twice space than a single image and hence the motivation for this novel approach called Summative Stereoscopic Image Compression using Arithmetic Coding (S2ICAC) where the difference and average of these stereo pair images are calculated, quantized in the case of lossy approach and unquantized in the case of lossless approach, and arithmetic coding is applied. The experimental result analysis indicates that the proposed method achieves high compression ratio and high PSNR value. The proposed method is also compared with JPEG 2000 Position Based Coding Scheme(JPEG 2000 PBCS) and Stereoscopic Image Compression using Huffman Coding (SICHC). From the experimental analysis, it is observed that S2ICAC outperforms JPEG 2000 PBCS as well as SICHC
    • …
    corecore