137 research outputs found

    Streaming and User Behaviour in Omnidirectional Videos

    Get PDF
    Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video, offering higher degrees of immersion and interaction. The revolutionary novelty of this technology is the possibility for users to interact with the surrounding environment, and to feel a sense of engagement and presence in a virtual space. Users are clearly the main driving force of immersive applications and consequentially the services need to be properly tailored to them. In this context, this chapter highlights the importance of the new role of users in ODV streaming applications, and thus the need for understanding their behaviour while navigating within ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming systems is also presented. In particular, the state-of-the-art solutions under examination in this chapter are distinguished in terms of system-centric and user-centric streaming approaches: the former approach comes from a quite straightforward extension of well-established solutions for the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour and enable more personalised ODV streaming

    Visual Distortions in 360-degree Videos

    Get PDF
    Omnidirectional (or 360-degree) images and videos are emergent signals in many areas such as robotics and virtual/augmented reality. In particular, for virtual reality, they allow an immersive experience in which the user is provided with a 360-degree field of view and can navigate throughout a scene, e.g., through the use of Head Mounted Displays. Since it represents the full 360-degree field of view from one point of the scene, omnidirectional content is naturally represented as spherical visual signals. Current approaches for capturing, processing, delivering, and displaying 360-degree content, however, present many open technical challenges and introduce several types of distortions in these visual signals. Some of the distortions are specific to the nature of 360-degree images, and often different from those encountered in the classical image communication framework. This paper provides a first comprehensive review of the most common visual distortions that alter 360-degree signals undergoing state of the art processing in common applications. While their impact on viewers' visual perception and on the immersive experience at large is still unknown ---thus, it stays an open research topic--- this review serves the purpose of identifying the main causes of visual distortions in the end-to-end 360-degree content distribution pipeline. It is essential as a basis for benchmarking different processing techniques, allowing the effective design of new algorithms and applications. It is also necessary to the deployment of proper psychovisual studies to characterise the human perception of these new images in interactive and immersive applications

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learning-oriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise
    • …
    corecore