76,922 research outputs found

    Instantly Decodable Network Coding: From Point to Multi-Point to Device-to-Device Communications

    Get PDF
    The network coding paradigm enhances transmission efficiency by combining information flows and has drawn significant attention in information theory, networking, communications and data storage. Instantly decodable network coding (IDNC), a subclass of network coding, has demonstrated its ability to improve the quality of service of time critical applications thanks to its attractive properties, namely the throughput enhancement, delay reduction, simple XOR-based encoding and decoding, and small coefficient overhead. Nonetheless, for point to multi-point (PMP) networks, IDNC cannot guarantee the decoding of a specific new packet at individual devices in each transmission. Furthermore, for device-to-device (D2D) networks, the transmitting devices may possess only a subset of packets, which can be used to form coded packets. These challenges require the optimization of IDNC algorithms to be suitable for different application requirements and network configurations. In this thesis, we first study a scalable live video broadcast over a wireless PMP network, where the devices receive video packets from a base station. Such layered live video has a hard deadline and imposes a decoding order on the video layers. We design two prioritized IDNC algorithms that provide a high level of priority to the most important video layer before considering additional video layers in coding decisions. These prioritized algorithms are shown to increase the number of decoded video layers at the devices compared to the existing network coding schemes. We then study video distribution over a partially connected D2D network, where a group of devices cooperate with each other to recover their missing video content. We introduce a cooperation aware IDNC graph that defines all feasible coding and transmission conflictfree decisions. Using this graph, we propose an IDNC solution that avoids coding and transmission conflicts, and meets the hard deadline for high importance video packets. It is demonstrated that the proposed solution delivers an improved video quality to the devices compared to the video and cooperation oblivious coding schemes. We also consider a heterogeneous network wherein devices use two wireless interfaces to receive packets from the base station and another device concurrently. For such network, we are interested in applications with reliable in-order packet delivery requirements. We represent all feasible coding opportunities and conflict-free transmissions using a dual interface IDNC graph. We select a maximal independent set over the graph by considering dual interfaces of individual devices, in-order delivery requirements of packets and lossy channel conditions. This graph based solution is shown to reduce the in-order delivery delay compared to the existing network coding schemes. Finally, we consider a D2D network with a group of devices experiencing heterogeneous channel capacities. For such cooperative scenarios, we address the problem of minimizing the completion time required for recovering all missing packets at the devices using IDNC and physical layer rate adaptation. Our proposed IDNC algorithm balances between the adopted transmission rate and the number of targeted devices that can successfully receive the transmitted packet. We show that the proposed rate aware IDNC algorithm reduces the completion time compared to the rate oblivious coding scheme

    Multi path multi priority (MPMP) scalable video streaming for mobile applications

    Get PDF

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Effect of oil palm empty fruit bunches (OPEFB) fibers to the compressive strength and water absorption of concrete

    Get PDF
    Growing popularity based on environmentally-friendly, low cost and lightweight building materials in the construction industry has led to a need to examine how these characteristics can be achieved and at the same time giving the benefit to the environment and maintain the material requirements based on the standards required. Recycling of waste generated from industrial and agricultural activities as measures of building materials is not only a viable solution to the problem of pollution but also to produce an economic design of building
    • …
    corecore