94 research outputs found

    Centralized and Cooperative Transmission of Secure Multiple Unicasts using Network Coding

    Full text link
    We introduce a method for securely delivering a set of messages to a group of clients over a broadcast erasure channel where each client is interested in a distinct message. Each client is able to obtain its own message but not the others'. In the proposed method the messages are combined together using a special variant of random linear network coding. Each client is provided with a private set of decoding coefficients to decode its own message. Our method provides security for the transmission sessions against computational brute-force attacks and also weakly security in information theoretic sense. As the broadcast channel is assumed to be erroneous, the missing coded packets should be recovered in some way. We consider two different scenarios. In the first scenario the missing packets are retransmitted by the base station (centralized). In the second scenario the clients cooperate with each other by exchanging packets (decentralized). In both scenarios, network coding techniques are exploited to increase the total throughput. For the case of centralized retransmissions we provide an analytical approximation for the throughput performance of instantly decodable network coded (IDNC) retransmissions as well as numerical experiments. For the decentralized scenario, we propose a new IDNC based retransmission method where its performance is evaluated via simulations and analytical approximation. Application of this method is not limited to our special problem and can be generalized to a new class of problems introduced in this paper as the cooperative index coding problem

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Instantly Decodable Network Coding for Real-Time Scalable Video Broadcast over Wireless Networks

    Full text link
    In this paper, we study a real-time scalable video broadcast over wireless networks in instantly decodable network coded (IDNC) systems. Such real-time scalable video has a hard deadline and imposes a decoding order on the video layers.We first derive the upper bound on the probability that the individual completion times of all receivers meet the deadline. Using this probability, we design two prioritized IDNC algorithms, namely the expanding window IDNC (EW-IDNC) algorithm and the non-overlapping window IDNC (NOW-IDNC) algorithm. These algorithms provide a high level of protection to the most important video layer before considering additional video layers in coding decisions. Moreover, in these algorithms, we select an appropriate packet combination over a given number of video layers so that these video layers are decoded by the maximum number of receivers before the deadline. We formulate this packet selection problem as a two-stage maximal clique selection problem over an IDNC graph. Simulation results over a real scalable video stream show that our proposed EW-IDNC and NOW-IDNC algorithms improve the received video quality compared to the existing IDNC algorithms

    Coding Opportunity Densification Strategies for Instantly Decodable Network Coding

    Full text link
    In this paper, we aim to identify the strategies that can maximize and monotonically increase the density of the coding opportunities in instantly decodable network coding (IDNC).Using the well-known graph representation of IDNC, first derive an expression for the exact evolution of the edge set size after the transmission of any arbitrary coded packet. From the derived expressions, we show that sending commonly wanted packets for all the receivers can maximize the number of coding opportunities. Since guaranteeing such property in IDNC is usually impossible, this strategy does not guarantee the achievement of our target. Consequently, we further investigate the problem by deriving the expectation of the edge set size evolution after ignoring the identities of the packets requested by the different receivers and considering only their numbers. We then employ this expected expression to show that serving the maximum number of receivers having the largest numbers of missing packets and erasure probabilities tends to both maximize and monotonically increase the expected density of coding opportunities. Simulation results justify our theoretical findings. Finally, we validate the importance of our work through two case studies showing that our identified strategy outperforms the step-by-step service maximization solution in optimizing both the IDNC completion delay and receiver goodput

    Coalition Formation Game for Cooperative Content Delivery in Network Coding Assisted D2D Communications

    Get PDF
    Device-to-device (D2D) communications have shown a huge potential in cellular offloading and become a potential technology in 5G and beyond. In D2D networks, the requested contents by user devices (UDs) can be delivered via D2D links, thus offloading the content providers (CPs). In this work, we address the problem of minimizing the delay of delivering content in a decentralized and partially D2D connected network using network coding (NC) and cooperation among the UDs. The proposed optimization framework considers UDs’ acquired and missing contents, their limited coverage zones, NC, and content’s erasure probability. As such, the completion time for delivering all missing contents to all UDs is minimized. The problem is modeled as a coalition game with cooperative-players wherein the payoff function is derived so that increasing individual payoff results in the desired cooperative behavior. Given the intractability of the formulation, the coalition game is relaxed to a coalition formation game (CFG). A distributed coalition formation algorithm relying on merge-and-split rules is developed for solving the relaxed problem at each transmission. The effectiveness of the proposed solution is validated through computer simulation against existing schemes
    • …
    corecore