12,268 research outputs found

    A Semantic Approach To Autonomous Mixing

    Get PDF

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work

    Full text link
    Deep networks thrive when trained on large scale data collections. This has given ImageNet a central role in the development of deep architectures for visual object classification. However, ImageNet was created during a specific period in time, and as such it is prone to aging, as well as dataset bias issues. Moving beyond fixed training datasets will lead to more robust visual systems, especially when deployed on robots in new environments which must train on the objects they encounter there. To make this possible, it is important to break free from the need for manual annotators. Recent work has begun to investigate how to use the massive amount of images available on the Web in place of manual image annotations. We contribute to this research thread with two findings: (1) a study correlating a given level of noisily labels to the expected drop in accuracy, for two deep architectures, on two different types of noise, that clearly identifies GoogLeNet as a suitable architecture for learning from Web data; (2) a recipe for the creation of Web datasets with minimal noise and maximum visual variability, based on a visual and natural language processing concept expansion strategy. By combining these two results, we obtain a method for learning powerful deep object models automatically from the Web. We confirm the effectiveness of our approach through object categorization experiments using our Web-derived version of ImageNet on a popular robot vision benchmark database, and on a lifelong object discovery task on a mobile robot.Comment: 8 pages, 7 figures, 3 table

    A Cognitive Science Based Machine Learning Architecture

    Get PDF
    In an attempt to illustrate the application of cognitive science principles to hard AI problems in machine learning we propose the LIDA technology, a cognitive science based architecture capable of more human-like learning. A LIDA based software agent or cognitive robot will be capable of three fundamental, continuously active, humanlike learning mechanisms:\ud 1) perceptual learning, the learning of new objects, categories, relations, etc.,\ud 2) episodic learning of events, the what, where, and when,\ud 3) procedural learning, the learning of new actions and action sequences with which to accomplish new tasks. The paper argues for the use of modular components, each specializing in implementing individual facets of human and animal cognition, as a viable approach towards achieving general intelligence

    Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects

    Full text link
    Perceiving the surrounding environment in terms of objects is useful for any general purpose intelligent agent. In this paper, we investigate a fundamental mechanism making object perception possible, namely the identification of spatio-temporally invariant structures in the sensorimotor experience of an agent. We take inspiration from the Sensorimotor Contingencies Theory to define a computational model of this mechanism through a sensorimotor, unsupervised and predictive approach. Our model is based on processing the unsupervised interaction of an artificial agent with its environment. We show how spatio-temporally invariant structures in the environment induce regularities in the sensorimotor experience of an agent, and how this agent, while building a predictive model of its sensorimotor experience, can capture them as densely connected subgraphs in a graph of sensory states connected by motor commands. Our approach is focused on elementary mechanisms, and is illustrated with a set of simple experiments in which an agent interacts with an environment. We show how the agent can build an internal model of moving but spatio-temporally invariant structures by performing a Spectral Clustering of the graph modeling its overall sensorimotor experiences. We systematically examine properties of the model, shedding light more globally on the specificities of the paradigm with respect to methods based on the supervised processing of collections of static images.Comment: 24 pages, 10 figures, published in Frontiers Robotics and A
    corecore