8,966 research outputs found

    Opportunistic off-path content discovery in information-centric networks

    Get PDF
    Recent research in Information-Centric Networks has considered various approaches for discovering content in the cache-enabled nodes of the network. Such approaches include scoped flooding and deploying a control plane protocol to disseminate the cache contents in the network, to name a few. In this work, we consider an opportunistic approach that uses trails left behind by data packets from the content origin to the sources in order to discover off-path cached content. We evaluate our approach using an ISP topology for various system parameters. We propose two new forwarding strategies built on top of our approach. Our results indicate that the opportunistic discovery mechanism can significantly increase cache hit rate compared to NDN's default forwarding strategy, while limiting the overhead at acceptable levels

    Pervasive intelligent routing in content centric delay tolerant networks

    Get PDF
    This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations

    ADN: An Information-Centric Networking Architecture for the Internet of Things

    Full text link
    Forwarding data by name has been assumed to be a necessary aspect of an information-centric redesign of the current Internet architecture that makes content access, dissemination, and storage more efficient. The Named Data Networking (NDN) and Content-Centric Networking (CCNx) architectures are the leading examples of such an approach. However, forwarding data by name incurs storage and communication complexities that are orders of magnitude larger than solutions based on forwarding data using addresses. Furthermore, the specific algorithms used in NDN and CCNx have been shown to have a number of limitations. The Addressable Data Networking (ADN) architecture is introduced as an alternative to NDN and CCNx. ADN is particularly attractive for large-scale deployments of the Internet of Things (IoT), because it requires far less storage and processing in relaying nodes than NDN. ADN allows things and data to be denoted by names, just like NDN and CCNx do. However, instead of replacing the waist of the Internet with named-data forwarding, ADN uses an address-based forwarding plane and introduces an information plane that seamlessly maps names to addresses without the involvement of end-user applications. Simulation results illustrate the order of magnitude savings in complexity that can be attained with ADN compared to NDN.Comment: 10 page

    Connecting the Edges: A Universal, Mobile-Centric, and Opportunistic Communications Architecture

    Get PDF
    The Internet has crossed new frontiers with access to it getting faster and cheaper. Considering that the architectural foundations of today's Internet were laid more than three decades ago, the Internet has done remarkably well until today coping with the growing demand. However, the future Internet architecture is expected to support not only the ever growing number of users and devices, but also a diverse set of new applications and services. Departing from the traditional host-centric access paradigm, where access to a desired content is mapped to its location, an information-centric model enables the association of access to a desired content with the content itself, irrespective of the location where it is being held. UMOBILE tailors the information-centric communication model to meet the requirements of opportunistic communications, integrating those connectivity approaches into a single architecture. By pushing services near the edge of the network, such an architecture can pervasively operate in any networking environment and allows for the development of innovative applications, providing access to data independent of the level of end-to-end connectivity availability

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store
    corecore