550 research outputs found

    MEMS suljenta kuparin lÀmpöpuristusliitÀnnÀllÀ

    Get PDF
    Copper thermocompression is a promising wafer-level packaging technique, as it allows the bonding of electric contacts simultaneously to hermetic encapsulation. In thermocompression bonding the bond is formed by diffusion of atoms from one bond interface to another. The diffusion is inhibited by barrier forming surface oxide, high surface roughness and low temperature. Aim of this study was to establish a wafer-level packaging process for MEMS (Mi-croElectroMechanical System) mirror and MEMS gyroscope. The cap wafer of the MEMS mirror has an antireflective coating that limits the thermal budget of the bonding process to 250°C. This temperature is below the eutectic temperature of most common eutectic bonding materials, such as Au-Sn (278°C), Au-Ge (361°C) and Au-Si (370°C). Thus a thermocompression bonding method needed to be developed. Copper was used as a bonding material due to its low cost, high self-diffusivity and resistance to oxidation in ambient air. The bond structures were fabricated using three different methods and the bonding was further enhanced by annealing. The bonded structures were characterized with scanning acoustic microscopy, scanning electron microscope and the bond strength was determined by shear testing. Exposing the bond structures to etchant during Cu seed layer removal was found to drastically increase the surface roughness of bond structures. This increase proved detrimental to bond strength and dicing yield and thus covering the bond surface during wet etching is recommended. The native oxidation on copper surfaces was completely removed with combination of ex situ acetic acid wet etch and in situ forming gas anneal. Successful thermocompression bonding process using sputtered copper films was established at a low temperature of 200°C, well below the thermal limitation set by the antireflective coating. The established wafer bonding process had high yield of 97% after dicing. The bond strength was evaluated by maximum shear strength and recorded at 75 MPa, which is well above the MIL-STD-883E standard (METHOD 2019.5) rejection limit of 6.08 MPa.Kuparin lÀmpöpuristusliitÀntÀ on lupaava kiekkotason pakkausmenetelmÀ, sillÀ se mahdollistaa sekÀ sÀhköisten liitÀntöjen, ettÀ hermeettisen suljennan toteuttamisen samanaikaisesti. LÀmpöpuristusliitÀnnÀssÀ sidos muodostuu atomien diffuusiosta liitospinnalta toiselle. Diffuusiota rajoittavat estokerroksen muodostava pinta oksidi, korkea pinnan karheus ja matala lÀmpötila. Diplomityön tavoitteena oli luoda kiekkotason pakkausmenetelmÀ mikroelektromekaaniselle (MEMS, MicroElectroMechanical System) peilille ja MEMS gyroskoopille. Peilin lasisen kansikiekon pinnalla oleva antiheijastava kalvo rajoitti liitÀnnÀssÀ kÀytettÀvÀn lÀmpötilan korkeintaan 250°C:een, mikÀ on alempi lÀmpötila kuin useimpien kiekkoliitÀnnÀssÀ kÀytettyjen materiaaliparien eutektinen piste. EsimerkkinÀ mainittakoon mm. Au-Sn (278°C), Au-Ge (361°C) ja Au-Si (370°C). Kuparin alhainen hinta, korkea ominaisdiffuusio ja hidas hapettuminen ilmakehÀssÀ puoltavat sen valintaa liitÀntÀmateriaaliksi. LiitÀntÀrakenteet valmistettiin kolmella menetelmÀllÀ ja liitÀnnÀn vahvuutta parannettiin lÀmpökÀsittelyllÀ. Liitetyt rakenteet karakterisoitiin pyyhkÀisy elektronimikroskoopin, akustisen mikroskoopin ja liitoslujuus-mittauksen avulla. Liitospintojen altistamisen hapolle havaittiin lisÀÀvÀn pinnankarkeutta ja olevan siten haitallista liitokselle ja laskevan saantoa. Liitospintojen suojaaminen siemenkerroksen syövytyksen aikana on suotavaa. Pintaoksidi pystytÀÀn poistamaan tÀysin suorittamalla oksidin mÀrkÀetsaus jÀÀetikalla sekÀ lÀmpökÀsittely N2/H2 atmosfÀÀrissÀ. Sputteroidut kuparikalvot pystyttiin liittÀmÀÀn onnistuneesti yhteen 200°C lÀmpötilassa, mikÀ on alle anti-heijastavan pinnan asettaman lÀmpötilarajan. TÀllÀ liitÀntÀ menetelmÀllÀ saavutettiin kiekkoliitoksella yhteen liitettyjen sirujen sahauksessa korkea 97% saanto. Liitoslujuus mÀÀritettiin maksimi-leikkausvoiman avulla ja sen suuruudeksi mitattiin 75 MPa. Lujuus oli yli kymmenkertainen MIL-STD-883E standardin (METHOD 2019.5) asettamaan hylkÀysrajaan 6.08 MPa nÀhden

    Contributions Ă  l’intĂ©gration des procĂ©dĂ©s de fabrication et d'encapsulation d’un commutateur MEMS RF ohmique

    Get PDF
    Abstract : This dissertation presents studies to resolve process integration problems in the fabrication of packaged radio frequency microelectromechanical system (RF MEMS) ohmic switches with a Au-Ru contact metallurgy and Al-Ge eutectic wafer bonding for wafer-level packaging (WLP). While unpackaged RF MEMS switches have shown promising attributes poor reliability has limited their development into practical products, demanding compatibility with a hermetic sealing solution. The first article, titled ‘Exploring Ru compatibility with Al-Ge eutectic wafer bonding,’ and its supplemental material examine bond impacts associated with the refractory metal ruthenium (Ru). The compatibility of Ru with a wafer bonding process has been virtually unexplored. The main text of this section outlines the results of blanket deposition annealing experiments with Ru, Al and Ge configurations to address concerns of ternary alloy poisoning, melt wettability on Ru, and Ru as a diffusing contaminant in Al and Ge. A brief exploration of the composition process window for Al-Ge alloys contaminated with Ru is made from available phase diagrams, and strong bond outcomes with real product wafers with Ru contacts are presented. The article concludes that Ru has high compatibility within an expected narrow composition process window of marginally reduced melting temperature for Al-Ge alloy. Supplemental material addresses additional process integration problems in the real bond process associated with Ru: alumina thickening, Ru contamination and Al hillock aggravation. These are challenges for the Al surface, which progressively loses bonding ability with Ge through the fabrication process, and can be obviated with unprocessed bonding Al without Ru exposure. The second article, titled ‘Mitigating re-entrant etch profile undercut in Au etch with an aqua regia variant,’ and its supplemental material examine processed Au outcomes and bond-on-contact consequences primarily inflicted on Au. Thermally-stable Au metallization to Si for microswitch contacts in packaged devices is a considerable integration challenge. The main text of this section outlines an etch profile investigation of Au metallization stack variants with adhesion layers to discriminate delamination-based undercutting from galvanic undercutting when using an aqua regia-based solution, showing which mechanism is applicable for this etchant. A brief examination of the electrochemistry of the etchant is made to explain the unusual outcome of mitigated galvanic undercut confirmed by this analysis, with delamination control eliminating or minimizing undercut for thick Au films. In the supplemental material Au surface evolution is tracked across the fabrication process, with the wafer bonding thermal cycle being deemed most significant. Au hillocking and delamination are the primary challenges, and segmentation of Au features is a leading mitigation option that increases the impact of any Au undercut. Together these chapters develop an improved understanding of contact/bond compatibility. Necessary and promising future work for RF MEMS microfabrication and packaging is outlined at the conclusion of this dissertation.Cette thĂšse prĂ©sente des Ă©tudes visant Ă  rĂ©soudre les problĂšmes d’intĂ©gration de procĂ©dĂ©s dans la fabrication de commutateurs radiofrĂ©quence ohmiques de systĂšmes microĂ©lectromĂ©caniques de (RF MEMS) encapsulĂ©s par une mĂ©tallurgie de contact Au-Ru et un collage eutectique de gaufres Al-Ge pour l'encapsulation au niveau des gaufres (Wafer-Level Packaging, WLP). Bien que les commutateurs MEMS RF non encapsules aient montrĂ© des attributs prometteurs, leur faible fiabilitĂ© a limitĂ© leur dĂ©veloppement en produits pratiques, exigeant la compatibilitĂ© avec une solution de collage hermĂ©tique. Le premier article, intitulĂ© â€čâ€čExploring Ru compatibility with Al-Ge eutectic wafer bondingâ€șâ€ș, et son supplĂ©ment examinent les effets de liaison associĂ©s au ruthĂ©nium (Ru), un mĂ©tal rĂ©fractaire. La compatibilitĂ© du Ru avec un procĂ©dĂ© de collage de gaufres a Ă©tĂ© trĂšs par inexplorĂ©e. Le texte principal de cette section prĂ©sente les rĂ©sultats d'expĂ©riences de recuit des dĂ©pĂŽts pleine plaque avec des configurations de Ru, Al et Ge pour rĂ©pondre aux prĂ©occupations concernant l'empoisonnement des alliages ternaires, la mouillabilitĂ© de la masse fondue sur le Ru, et le Ru en tant que contaminant diffusant dans Al et Ge. Une brĂšve exploration de la fenĂȘtre de procĂ©dĂ© de composition pour les alliages Al-Ge contaminĂ©s par Ru est faite Ă  partir des diagrammes de phase disponibles, et des rĂ©sultats de collage fort avec des gaufres de produits rĂ©els avec des contacts Ru sont prĂ©sentĂ©s. L'article conclut que Ru a une compatibilitĂ© Ă©levĂ©e dans une fenĂȘtre de procĂ©dĂ© de composition Ă©troite attendue de tempĂ©rature de fusion marginalement rĂ©duite pour l'alliage Al-Ge. Des documents complĂ©mentaires traitent de problĂšmes d'intĂ©gration autres dans le procĂ©dĂ© de collage rĂ©el associĂ©s au Ru: Ă©paississement de l'alumine, contamination par le Ru et aggravation de la topographie d'Al. Il s'agit de dĂ©fis pour la surface de l'aluminium, qui perd progressivement sa capacitĂ© de collage avec le Ge au cours du procĂ©dĂ© de fabrication, et qui peuvent ĂȘtre Ă©vitĂ©s avec de l'aluminium de collage non traitĂ© sans exposition au Ru. Le deuxiĂšme article, intitulĂ© â€čâ€čMitigating re-entrant etch profile undercut in Au etch with an aqua regia variantâ€șâ€ș, et son matĂ©riel supplĂ©mentaire examinent les rĂ©sultats de la gravure de l'Au et les consĂ©quences de la liaison sur le contact principalement infligĂ©es Ă  l'Au. La mĂ©tallisation thermiquement stable de l'Au sur le Si pour les contacts dans les dispositifs encapsulĂ©s est un dĂ©fi d'intĂ©gration considĂ©rable. Le texte principal de cette section dĂ©crit une Ă©tude sur le profil de gravure de variantes d'empilement de mĂ©tallisation Au avec des couches d'adhĂ©rence pour distinguer la sous-coupe basĂ©e sur la dĂ©lamination de la sous-coupe galvanique lors de l'utilisation d'une solution Ă  base d'eau rĂ©gale, montrant quel mĂ©canisme est applicable pour ce rĂ©actif de gravure. Un bref examen de l'Ă©lectrochimie de l'agent de gravure est effectuĂ© pour expliquer le rĂ©sultat inhabituel de la surgravure galvanique attĂ©nuĂ©e confirmĂ©e par cette analyse, le contrĂŽle de la dĂ©lamination Ă©liminant ou minimisant la surgravure pour les films d'Au Ă©pais. Dans les documents complĂ©mentaires, l'Ă©volution de la surface de l'or est suivie tout au long du procĂ©dĂ© de fabrication, le cycle thermique de collage des gaufres Ă©tant considĂ©rĂ© comme le plus important. La formation de bosses et le dĂ©laminage de l'or sont les principaux dĂ©fis Ă  relever, et la segmentation des caractĂ©ristiques de l'or est une option d'attĂ©nuation importante qui augmente l'impact de toute contre-dĂ©pouille de l'or. Ensemble, ces chapitres permettent de mieux comprendre la compatibilitĂ© contact/liaison. Les travaux futurs nĂ©cessaires et prometteurs pour la microfabrication et le conditionnement des MEMS RF sont prĂ©sentĂ©s en conclusion de cette thĂšse

    Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detection

    Get PDF
    Radiation hardness is in the focus of the development of particle tracking and photon imaging detector installations. Semiconductor detectors, widely used in particle physics experiments, have turned into capacitive-coupled (AC-coupled) detectors from the originally developed conductively coupled (DC-coupled) detectors. This is due to the superior isolation of radiation-induced leakage current in AC-coupled detectors. However, some modern detector systems, such as the tracking detectors in the CERN LHC CMS or ATLAS experiments, are still DC-coupled. This originates from the difficulty of implementing AC coupling on very small pixel detector areas. In this report, we describe our advances in the detector processing technology. The first topic is the applications of the atomic layer deposition processing technology, which enables the very high densities of capacitance and resistance that are needed when the dimensions of the physical segmentation of pixel detectors need to be scaled down. The second topic is the flip-chip/bump-bonding interconnection technology, which is necessary in order to manufacture pixel detector modules on a large scale with a more than 99% yield of noise-free and faultless pixels and detector channels.Peer reviewe

    Laser patterning of amorphous silicon thin films deposited on flexible and rigid substrates

    Get PDF
    The possibility of direct writing thin semiconductive channels and structures on insulating substrates in a clean room-free process is attractive for its simplicity, cost effectiveness, and possibility of a wide choice of substrates. A broad range of applications, such as large-area electronic devices (touch screens, flexible displays), sensors, or optical wave guides could benefit from such a process. In this work, we directly write on doped hydrogenated amorphous silicon (a-Si:H), with thickness in the range 10 nm–1 Όm, using a Nd-YAG laser operating at 532 nm that is part of a Witec Raman confocal system. The contrast in conductivity between the exposed and unexposed areas is so high that the a-Si:H matrix needs not to be removed after exposure. B- and P-doped films were deposited on plastic, glass, and oxidized silicon wafers. The laser power threshold for crystallization was studied. The highest conductivity (886 Ω−1 cm−1) was obtained on wafer. On hard substrates, it is possible to tune the mesoscopic electrical conductivity in a very broad range of values (∌10−4–103) by design of the pattern to be transferred. Patterned films are piezoresistive with gauge factors as high as +18 and −29 for p- and n-type patterns, respectively. SEM image of laser written lines on a 10 nm thick a-Si:H film deposited on a Si/SiO2 substrate. Four regions are clearly distinguishable: the metal contact on the top area; the laser eroded area (lines); the crystallized areas adjacent to lines; the amorphous region at the bottom right.CNPqThe authors acknowledge Witec GmbH for collaboration in disclosing the set of instructions needed to communicate with Witec Four software

    Experimental Tests of Particle Flow Calorimetry

    Get PDF
    Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10 - 15 years of R\&D, mainly conducted within the CALICE collaboration, for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g.\ hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.Comment: 55 pages, 83 figures, to appear in Reviews of Modern physic

    Automated Semiconductor Defect Inspection in Scanning Electron Microscope Images: a Systematic Review

    Full text link
    A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.Comment: 16 pages, 12 figures, 3 table
    • 

    corecore