66 research outputs found

    Quality of Experience (QoE)-Aware Fast Coding Unit Size Selection for HEVC Intra-prediction

    Get PDF
    The exorbitant increase in the computational complexity of modern video coding standards, such as High Efficiency Video Coding (HEVC), is a compelling challenge for resource-constrained consumer electronic devices. For instance, the brute force evaluation of all possible combinations of available coding modes and quadtree-based coding structure in HEVC to determine the optimum set of coding parameters for a given content demand a substantial amount of computational and energy resources. Thus, the resource requirements for real time operation of HEVC has become a contributing factor towards the Quality of Experience (QoE) of the end users of emerging multimedia and future internet applications. In this context, this paper proposes a content-adaptive Coding Unit (CU) size selection algorithm for HEVC intra-prediction. The proposed algorithm builds content-specific weighted Support Vector Machine (SVM) models in real time during the encoding process, to provide an early estimate of CU size for a given content, avoiding the brute force evaluation of all possible coding mode combinations in HEVC. The experimental results demonstrate an average encoding time reduction of 52.38%, with an average Bjøntegaard Delta Bit Rate (BDBR) increase of 1.19% compared to the HM16.1 reference encoder. Furthermore, the perceptual visual quality assessments conducted through Video Quality Metric (VQM) show minimal visual quality impact on the reconstructed videos of the proposed algorithm compared to state-of-the-art approaches

    Fast quadtree level decision algorithm for H.264/HEVC transcoder

    Get PDF
    P

    Content-Split Block Search Algorithm Based High Efficiency Video Coding

    Get PDF
    690-693In this paper, the video streaming generation in H.265 using novel technique based on content split block (CSB) search algorithm is presented. The proposed algorithm exploits the Inter and Intra prediction through motion estimation and compensation (IPME) encoded to use four different QPs: 22, 27, 32, and 37, during the redundancy analysis in order to improve the quality of video frame encoded. The proposed algorithm exhibits the useful property of block structure based on content-tree representation for each and every frame to IPME coded without affecting either the bit rate of video stream and perceptual quality of the video frame. The proposed Search algorithm improves the visual quality of coded video frame and reduces the blocking artefacts of video frame passed through multi-stages of H.265

    Inter-Prediction Optimizations for Video Coding Using Adaptive Coding Unit Visiting Order

    Get PDF

    Fast Mode Decision for 3D-HEVC Depth Intracoding

    Get PDF
    The emerging international standard of high efficiency video coding based 3D video coding (3D-HEVC) is a successor to multiview video coding (MVC). In 3D-HEVC depth intracoding, depth modeling mode (DMM) and high efficiency video coding (HEVC) intraprediction mode are both employed to select the best coding mode for each coding unit (CU). This technique achieves the highest possible coding efficiency, but it results in extremely large encoding time which obstructs the 3D-HEVC from practical application. In this paper, a fast mode decision algorithm based on the correlation between texture video and depth map is proposed to reduce 3D-HEVC depth intracoding computational complexity. Since the texture video and its associated depth map represent the same scene, there is a high correlation among the prediction mode from texture video and depth map. Therefore, we can skip some specific depth intraprediction modes rarely used in related texture CU. Experimental results show that the proposed algorithm can significantly reduce computational complexity of 3D-HEVC depth intracoding while maintaining coding efficiency

    Complexity control of HEVC through quadtree depth estimation

    Full text link

    Algorithms for complexity management in video coding

    Get PDF
    Nowadays, the applications based on video services are becoming very popular, e.g., the transmission of video sequences over the Internet or mobile networks, or the increasingly common use of the High Definition (HD) video signals in television or Blu-Ray systems. Thanks to this popularity of video services, video coding has become an essential tool to send and store digital video sequences. The standardization organizations have developed several video coding standards, being the most recent H.264/AVC and HEVC. Both standards achieve great results compressing the video signal by virtue of a set of spatio-temporal predictive techniques. Nevertheless, the efficacy of these techniques comes in exchange for a high increase in the computational cost of the video coding process. Due to the high complexity of these standards, a variety of algorithms attempting to control the computational burden of video coding have been developed. The goal of these algorithms is to control the coder complexity, using a specific amount of coding resources while keeping the coding efficiency as high as possible. In this PhD Thesis, we propose two algorithms devoted to control the complexity of the H.264/AVC and HEVC standards. Relying on the statistical properties of the video sequences, we will demonstrate that the developed methods are able to control the computational burden avoiding relevant losses in coding efficiency. Moreover, our proposals are designed to adapt their behavior according to the video content, as well as to different target complexities. The proposed methods have been thoroughly tested and compared with other state-of-the-art proposals for a variety of video resolutions, video sequences and coding configurations. The obtained results proved that our methods outperform other approaches and revealed that they are suitable for practical implementations of coding standards, where the computational complexity becomes a key feature for a proper design of the system.En la actualidad, la popularidad de las aplicaciones basadas en servicios de vídeo, como su transmisión sobre Internet o redes móviles, o el uso de la alta definición (HD) en sistemas de televisión o Blu-Ray, ha hecho que la codificación de vídeo se haya convertido en una herramienta imprescindible para poder transmitir y almacenar eficientemente secuencias de vídeo digitalizadas. Los organismos de estandarización han desarrollado diversos estándares de codificación de vídeo, siendo los más recientes H.264/AVC y HEVC. Ambos consiguen excelentes resultados a la hora de comprimir señales de vídeo, gracias a una serie de técnicas predictivas espacio-temporales. Sin embargo, la eficacia de estas técnicas tiene como contrapartida un considerable aumento en el coste computacional del proceso de codificación. Debido a la alta complejidad de estos estándares, se han desarrollado una gran cantidad de métodos para controlar el coste computacional del proceso de codificación. El objetivo de estos métodos es controlar la complejidad del codificador, utilizando para ello una cantidad de recursos específica mientras procuran maximizar la eficiencia del sistema. En esta Tesis, se proponen dos algoritmos dedicados a controlar la complejidad de los estándares H.264/AVC y HEVC. Apoyándose en las propiedades estadísticas de las secuencias de vídeo, demostraremos que los métodos desarrollados son capaces de controlar la complejidad sin incurrir en graves pérdidas de eficiencia de codificación. Además, nuestras propuestas se han diseñado para adaptar su funcionamiento al contenido de la secuencia de vídeo, así como a diferentes complejidades objetivo. Los métodos propuestos han sido ampliamente evaluados y comparados con otros sistemas del estado de la técnica, utilizando para ello una gran variedad de secuencias, resoluciones, y configuraciones de codificación, demostrando que alcanzan resultados superiores a los métodos con los que se han comparado. Adicionalmente, se ha puesto de manifiesto que resultan adecuados para implementaciones prácticas de los estándares de codificación, donde la complejidad computacional es un parámetro clave para el correcto diseño del sistema.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Fernando Jaureguizar Núñez.- Secretario: Iván González Díaz.- Vocal: Javier Ruiz Hidalg
    corecore