62,227 research outputs found

    Content Replication in Mobile Networks

    Get PDF
    Performance and reliability of content access in mobile networks is conditioned by the number and location of content replicas deployed at the network nodes. In this work, we design a practical, distributed solution to content replication that is suitable for dynamic environments and achieves load balancing. Simulation results show that our mechanism, which uses local measurements only, approximates well an optimal solution while being robust against network and demand dynamics. Also, our scheme outperforms alternative approaches in terms of both content access delay and access congestio

    A Lightweight Distributed Solution to Content Replication in Mobile Networks

    Full text link
    Performance and reliability of content access in mobile networks is conditioned by the number and location of content replicas deployed at the network nodes. Facility location theory has been the traditional, centralized approach to study content replication: computing the number and placement of replicas in a network can be cast as an uncapacitated facility location problem. The endeavour of this work is to design a distributed, lightweight solution to the above joint optimization problem, while taking into account the network dynamics. In particular, we devise a mechanism that lets nodes share the burden of storing and providing content, so as to achieve load balancing, and decide whether to replicate or drop the information so as to adapt to a dynamic content demand and time-varying topology. We evaluate our mechanism through simulation, by exploring a wide range of settings and studying realistic content access mechanisms that go beyond the traditional assumptionmatching demand points to their closest content replica. Results show that our mechanism, which uses local measurements only, is: (i) extremely precise in approximating an optimal solution to content placement and replication; (ii) robust against network mobility; (iii) flexible in accommodating various content access patterns, including variation in time and space of the content demand.Comment: 12 page

    The Power of Hood Friendship for Opportunistic Content Dissemination in Mobile Social Networks

    Get PDF
    We focus on dissemination of content for delay tolerant applications/services, (i.e. content sharing, advertisement propagation, etc.) where users are geographically clustered into communities. Due to emerging security and privacy related issues, majority of users are only willing to share information/content with the users who are previously identified as friends. In this environment, opportunistic communication will not be effective due to the lack of known friends within the communication range. In this paper, we propose a novel architecture that addresses the issues of lack of trust, timeliness of delivery, loss of user control, and privacy-aware distributed mobile social networking by combining the advantages of distributed decentralised storage and opportunistic communications. We formally define a content replication problem in mobile social networks and show that it is computationally hard to solve optimally. Then, we propose a community based greedy heuristic algorithm with novel dynamic centrality metrics to replicate content in well-selected users, to maximise the content dissemination with limited number of replication. Using both real world and synthetic traces, we show that content replication can attain a large coverage gain and reduce the content delivery latency

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    Context-aware collaborative storage and programming for mobile users

    Get PDF
    Since people generate and access most digital content from mobile devices, novel innovative mobile apps and services are possible. Most people are interested in sharing this content with communities defined by friendship, similar interests, or geography in exchange for valuable services from these innovative apps. At the same time, they want to own and control their content. Collaborative mobile computing is an ideal choice for this situation. However, due to the distributed nature of this computing environment and the limited resources on mobile devices, maintaining content availability and storage fairness as well as providing efficient programming frameworks are challenging. This dissertation explores several techniques to improve these shortcomings of collaborative mobile computing platforms. First, it proposes a medley of three techniques into one system, MobiStore, that offers content availability in mobile peer-to-peer networks: topology maintenance with robust connectivity, structural reorientation based on the current state of the network, and gossip-based hierarchical updates. Experimental results showed that MobiStore outperforms a state-of-the-art comparison system in terms of content availability and resource usage fairness. Next, the dissertation explores the usage of social relationship properties (i.e., network centrality) to improve the fairness of resource allocation for collaborative computing in peer-to-peer online social networks. The challenge is how to provide fairness in content replication for P2P-OSN, given that the peers in these networks exchange information only with one-hop neighbors. The proposed solution provides fairness by selecting the peers to replicate content based on their potential to introduce the storage skewness, which is determined from their structural properties in the network. The proposed solution, Philia, achieves higher content availability and storage fairness than several comparison systems. The dissertation concludes with a high-level distributed programming model, which efficiently uses computing resources on a cloud-assisted, collaborative mobile computing platform. This platform pairs mobile devices with virtual machines (VMs) in the cloud for increased execution performance and availability. On such a platform, two important challenges arise: first, pairing the two computing entities into a seamless computation, communication, and storage unit; and second, using the computing resources in a cost-effective way. This dissertation proposes Moitree, a distributed programming model and middleware that translates high-level programming constructs into events and provides the illusion of a single computing entity over the mobile-VM pairs. From programmers’ viewpoint, the Moitree API models user collaborations into dynamic groups formed over location, time, or social hierarchies. Experimental results from a prototype implementation show that Moitree is scalable, suitable for real-time apps, and can improve the performance of collaborating apps regarding latency and energy consumption
    • 

    corecore