8 research outputs found

    Enhanced Rateless Coding and Compressive Sensing for Efficient Data/multimedia Transmission and Storage in Ad-hoc and Sensor Networks

    Get PDF
    In this dissertation, we investigate the theory and applications of the novel class of FEC codes called rateless or fountain codes in video transmission and wireless sensor networks (WSN). First, we investigate the rateless codes in intermediate region where the number of received encoded symbols is less that minimum required for full datablock decoding. We devise techniques to improve the input symbol recovery rate when the erasure rate is unknown, and also for the case where an estimate of the channel erasure rate is available. Further, we design unequal error protection (UEP) rateless codes for distributed data collection of data blocks of unequal lengths, where two encoders send their rateless coded output symbols to a destination through a common relay. We design such distributed rateless codes, and jointly optimize rateless coding parameters at each nodes and relaying parameters. Moreover, we investigate the performance of rateless codes with finite block length in the presence of feedback channel. We propose a smart feedback generation technique that greatly improves the performance of rateless codes when data block is finite. Moreover, we investigate the applications of UEP-rateless codes in video transmission systems. Next, we study the optimal cross-layer design of a video transmission system with rateless coding at application layer and fixed-rate coding (RCPC coding) at physical layer. Finally, we review the emerging compressive sensing (CS) techniques that have close connections to FEC coding theory, and designed an efficient data storage algorithm for WSNs employing CS referred to by CStorage. First, we propose to employ probabilistic broadcasting (PB) to form one CS measurement at each node and design CStorage- P. Later, we can query any arbitrary small subset of nodes and recover all sensors reading. Next, we design a novel parameterless and more efficient data dissemination algorithm that uses two-hop neighbor information referred to alternating branches (AB).We replace PB with AB and design CStorage-B, which results in a lower number of transmissions compared to CStorage-P.Electrical Engineerin

    Keberkesanan program simulasi penapis sambutan dedenyut terhingga (FIR) terhadap kefahaman pelajar kejuruteraan elektrik

    Get PDF
    Kefahaman merupakan aset bagi setiap pelajar. Ini kerana melalui kefahaman pelajar dapat mengaplikasikan konsep yang dipelajari di dalam dan di luar kelas. Kajian ini dijalankan bertujuan menilai keberkesanan program simulasi penapis sambutan dedenyut terhingga (FIR) terhadap kefahaman pelajar kejuruteraan elektrik FKEE, UTHM dalam mata pelajaran Pemprosesan Isyarat Digital (DSP) bagi topik penapis FIR. Metodologi kajian ini berbentuk kaedah reka bentuk kuasi�eksperimental ujian pra-pasca bagi kumpulan-kumpulan tidak seimbang. Seramai 40 responden kajian telah dipilih dan dibahagi secara rawak kepada dua kllmpulan iaitu kumpulan rawatan yang menggunakan program simulasi penapis FIR dan kumpulan kawalan yang menggunakan kaedah pembelajaran berorientasikan modul pembelajaran DSP UTHM. Setiap responden menduduki dua ujian pencapaian iaitu ujian pra dan ujian pasca yang berbentuk kuiz. Analisis data berbentuk deskriptif dan inferens dilakllkan dengan menggunakan Peri sian Statistical Package for Social Science (SPSS) versi 11.0. Dapatan kajian menunjukkan kedua-dua kumpulan pelajar telah mengalami peningkatan dari segi kefahaman iaitu daripada tahap tidak memuaskan kepada tahap kepujian selepas menggunakan kaedah pembelajaran yang telah ditetapkan bagi kumpulan masing-masing. Walaubagaimanapun, pelajar kumpulan rawatan menunjukkan peningkatan yang lebih tinggi sedikit berbanding pelajar kumpulan kawalan. Namun begitu, dapatan kajian secara ujian statistik menunjukkan tidak terdapat perbezaan yang signifikan dari segi pencapaian markah ujian pasca di antara pelajar kumpulan rawatan dengan pelajar kumpulan kawalan. Sungguhpun begitu, penggunaan program simulasi penapis FIR telah membantu dalam peningkatan kefahaman pelajar mengenai topik penapis FIR

    Data Collection Algorithms in Wireless Sensor Networks Employing Compressive Sensing

    Get PDF
    This dissertation proposes new algorithms that exploit the integration between Compressive Sensing (CS) and the traditional data collection methods in Wireless Sensor Networks (WSNs).Generally, a WSN with monitoring applications needs to collect all data from all sensors deployed in a sensing area to be sent to a base-station (BS) or a data processing center. Since all the sensors operate on low power with pre-charged batteries and may not easily be accessed by people, the power required for transmitting all data to the BS usually may quickly deplete the sensors and impact network lifetime resulting in network disconnection. In order to prolong the network lifetime, the sensors can be improved or the methods of collecting data can be improved.CS provides a novel technique that offers to reconstruct data from all sensors in the network using undersampled measurements. In the dissertation, four efficient algorithms based on the CS technique have been proposed. Only a certain number of CS measurements is created from the network to be forwarded to the BS for signal reconstruction resulting in reduced data communication and increased network lifetime. Expressions for power consumption for all data transmission in the networks are formulated and analyzed. The networks significantly reduce power consumption while collecting data. Some optimal cases are suggested and analyzed for such networks to consume the least power.Electrical Engineerin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    A study into prolonging Wireless Sensor Network lifetime during disaster scenarios

    Get PDF
    A Wireless Sensor Network (WSN) has wide potential for many applications. It can be employed for normal monitoring applications, for example, the monitoring of environmental conditions such as temperature, humidity, light intensity and pressure. A WSN is deployed in an area to sense these environmental conditions and send information about them to a sink. In certain locations, disasters such as forest fires, floods, volcanic eruptions and earth-quakes can happen in the monitoring area. During the disaster, the events being monitored have the potential to destroy the sensing devices; for example, they can be sunk in a flood, burnt in a fire, damaged in harmful chemicals, and burnt in volcano lava etc. There is an opportunity to exploit the energy of these nodes before they are totally destroyed to save the energy of the other nodes in the safe area. This can prolong WSN lifetime during the critical phase. In order to investigate this idea, this research proposes a new routing protocol called Maximise Unsafe Path (MUP) routing using Ipv6 over Low power Wireless Personal Area Networks (6LoWPAN). The routing protocol aims to exploit the energy of the nodes that are going to be destroyed soon due to the environment, by concentrating packets through these nodes. MUP adapts with the environmental conditions. This is achieved by classifying four different levels of threat based on the sensor reading information and neighbour node condition, and represents this as the node health status, which is included as one parameter in the routing decision. High priority is given to a node in an unsafe condition compared to another node in a safer condition. MUP does not allow packet routing through a node that is almost failed in order to avoid packet loss when the node fails. To avoid the energy wastage caused by selecting a route that requires a higher energy cost to deliver a packet to the sink, MUP always forwards packets through a node that has the minimum total path cost. MUP is designed as an extension of RPL, an Internet Engineering Task Force (IETF) standard routing protocol in a WSN, and is implemented in the Contiki Operating System (OS). The performance of MUP is evaluated using simulations and test-bed experiments. The results demonstrate that MUP provides a longer network lifetime during a critical phase of typically about 20\% when compared to RPL, but with a trade-off lower packet delivery ratio and end-to-end delay performances. This network lifetime improvement is crucial for the WSN to operate for as long as possible to detect and monitor the environment during a critical phase in order to save human life, minimise loss of property and save wildlife
    corecore