2,199 research outputs found

    Consensus tracking problem for linear fractional multi-agent systems with initial state error

    Get PDF
    In this paper, we discuss the consensus tracking problem by introducing two iterative learning control (ILC) protocols (namely, Dα-type and PDα-type) with initial state error for fractional-order homogenous and heterogenous multi-agent systems (MASs), respectively. The initial state of each agent is fixed at the same position away from the desired one for iterations. For both homogenous and heterogenous MASs, the Dα-type ILC rule is first designed and analyzed, and the asymptotical convergence property is carefully derived. Then, an additional P-type component is added to formulate a PDα-type ILC rule, which also guarantees the asymptotical consensus performance. Moreover, it turns out that the PDα-type ILC rule can further adjust the final performance. Two numerical examples are provided to verify the theoretical results

    Iterative learning control for multi-agent systems with impulsive consensus tracking

    Get PDF
    In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical consensus as the iteration number increases via the proposed learning laws if the virtual leader has a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking a continuous or piecewise continuous desired trajectory

    Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies

    Get PDF
    This paper proposes a novel distributed fault-tolerant consensus tracking control design for multi-agent systems with abrupt and incipient actuator faults under fixed and switching topologies. The fault and state information of each individual agent is estimated by merging unknown input observer in the decentralized fault estimation hierarchy. Then, two kinds of distributed fault-tolerant consensus tracking control schemes with average dwelling time technique are developed to guarantee the mean-square exponential consensus convergence of multi-agent systems, respectively, on the basis of the relative neighboring output information as well as the estimated information in fault estimation. Simulation results demonstrate the effectiveness of the proposed fault-tolerant consensus tracking control algorithm

    Networked Convergence of Fractional-Order Multiagent Systems with a Leader and Delay

    Get PDF
    This paper investigates the convergence of fractional-order discrete-time multiagent systems with a leader and sampling delay by using Hermite-Biehler theorem and the change of bilinearity. It is shown that such system can achieve convergence depending on the sampling interval h, the fractional-order α, and the sampling delay τ and its interconnection topology. Finally, some numerical simulations are given to illustrate the results
    corecore