89 research outputs found

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    Two-Variable Logic on Data Trees and XML Reasoning

    Get PDF
    International audienceMotivated by reasoning tasks in the context of XML languages, the satisfiability problem of logics on data trees is investigated. The nodes of a data tree have a label from a finite set and a data value from a possibly infinite set. It is shown that satisfiability for two-variable first-order logic is decidable if the tree structure can be accessed only through the child and the next sibling predicates and the access to data values is restricted to equality tests. From this main result decidability of satisfiability and containment for a data-aware fragment of XPath and of the implication problem for unary key and inclusion constraints is concluded

    Global Numerical Constraints on Trees

    Full text link
    We introduce a logical foundation to reason on tree structures with constraints on the number of node occurrences. Related formalisms are limited to express occurrence constraints on particular tree regions, as for instance the children of a given node. By contrast, the logic introduced in the present work can concisely express numerical bounds on any region, descendants or ancestors for instance. We prove that the logic is decidable in single exponential time even if the numerical constraints are in binary form. We also illustrate the usage of the logic in the description of numerical constraints on multi-directional path queries on XML documents. Furthermore, numerical restrictions on regular languages (XML schemas) can also be concisely described by the logic. This implies a characterization of decidable counting extensions of XPath queries and XML schemas. Moreover, as the logic is closed under negation, it can thus be used as an optimal reasoning framework for testing emptiness, containment and equivalence

    A Tree Logic with Graded Paths and Nominals

    Full text link
    Regular tree grammars and regular path expressions constitute core constructs widely used in programming languages and type systems. Nevertheless, there has been little research so far on reasoning frameworks for path expressions where node cardinality constraints occur along a path in a tree. We present a logic capable of expressing deep counting along paths which may include arbitrary recursive forward and backward navigation. The counting extensions can be seen as a generalization of graded modalities that count immediate successor nodes. While the combination of graded modalities, nominals, and inverse modalities yields undecidable logics over graphs, we show that these features can be combined in a tree logic decidable in exponential time

    Alternating register automata on finite words and trees

    Get PDF
    We study alternating register automata on data words and data trees in relation to logics. A data word (resp. data tree) is a word (resp. tree) whose every position carries a label from a finite alphabet and a data value from an infinite domain. We investigate one-way automata with alternating control over data words or trees, with one register for storing data and comparing them for equality. This is a continuation of the study started by Demri, Lazic and Jurdzinski. From the standpoint of register automata models, this work aims at two objectives: (1) simplifying the existent decidability proofs for the emptiness problem for alternating register automata; and (2) exhibiting decidable extensions for these models. From the logical perspective, we show that (a) in the case of data words, satisfiability of LTL with one register and quantification over data values is decidable; and (b) the satisfiability problem for the so-called forward fragment of XPath on XML documents is decidable, even in the presence of DTDs and even of key constraints. The decidability is obtained through a reduction to the automata model introduced. This fragment contains the child, descendant, next-sibling and following-sibling axes, as well as data equality and inequality tests

    XPath satisfiability in the presence of DTDs

    Get PDF
    We study the satisfiability problem associated with XPath in the presence of DTDs. This is the problem of determining, given a query p in an XPath fragment and a DTD D, whether or not there exists an XML document T such that T conforms to D and the answer of p on T is nonempty. We consider a variety of XPath fragments widely used in practice, and investigate the impact of different XPath operators on the satisfiability analysis. We first study the problem for negation-free XPath fragments with and without upward axes, recursion and data-value joins, identifying which factors lead to tractability and which to NP-completeness. We then turn to fragments with negation but without data values, establishing lower and upper bounds in the absence and in the presence of upward modalities and recursion. We show that with negation the complexity ranges from PSPACE to EXPTIME. Moreover, when both data values and negation are in place, we find that the complexity ranges from NEXPTIME to undecidable. Furthermore, we give a finer analysis of the problem for particular classes of DTDs, exploring the impact of various DTD constructs, identifying tractable cases, as well as providing the complexity in the query size alone. Finally, we investigate the problem for XPath fragments with sibling axes, exploring the impact of horizontal modalities on the satisfiability analysis. © 2008 ACM

    Expressive Logical Combinators for Free

    No full text
    International audienceA popular technique for the analysis of web query languages relies on the translation of queries into logical formulas. These formulas are then solved for satisfiability using an off-the-shelf satisfiabil-ity solver. A critical aspect in this approach is the size of the obtained logical formula, since it constitutes a factor that affects the combined complexity of the global approach. We present logical combi-nators whose benefit is to provide an exponential gain in succinctness in terms of the size of the logical representation. This opens the way for solving a wide range of problems such as satisfiability and containment for expressive query languages in exponential-time, even though their direct formulation into the underlying logic results in an exponential blowup of the formula size, yielding an incorrectly presumed two-exponential time complexity. We illustrate this from a practical point of view on a few examples such as numerical occurrence constraints and tree frontier properties which are concrete problems found with semi-structured data

    Mu-Calculus Based Resolution of XPath Decision Problems

    Get PDF
    XPath is the standard declarative notation for navigating XML data and returning a set of matching nodes. In the context of XSLT/XQuery analysis, query optimization, and XML type checking, XPath decision problems arise naturally. They notably include XPath containment (whether or not for any tree the result of a particular query is included in the result of a second one), and XPath satisfiability (whether or not an expression yields a non-empty result), in the presence (or the absence) of XML DTDs. In this paper, we propose a unifying logic for XML, namely the alternation-free modal mu-calculus with converse. We show how to translate major XML concepts such as XPath and DTDs into this logic. Based on these embeddings, we show how XPath decision problems can be solved using a state-of-the-art EXPTIME decision procedure for mu-calculus satisfiability. We provide preliminary experiments which shed light, for the first time, on the cost of solving XPath decision problems in practice
    corecore