2,729 research outputs found

    A Novel Blended State Estimated Adaptive Controller for Voltage and Current Control of Microgrid against Unknown Noise

    Full text link
    © 2013 IEEE. In this study, a novel blended state estimated adaptive controller is designed for voltage and current control of microgrid against unknown noise. The core feature of the microgrid (MG) is its ability to integrate more than one distributed energy resource into the main grid. The state of a microgrid may deteriorate due to many reasons, for example malicious cyber-attacks, disturbances, packet losses, etc. Therefore, it is necessary to achieve the true state of the system to enhance the control requirement and automation of the microgrid. To achieve the true state of a microgrid, this study proposes the use of an algorithm based on the unscented kalman filter (UKF). The proposed state estimator technique is developed using an unscented-transformation and sigma-points measurement technique capable of minimizing the mean and covariance of a nonlinear cost function to estimate the true state of a single-phase, three-phase single-source and three-phase multi-source microgrid system. The advantage of the proposed estimator over using extended kalman filter (EKF) is investigated in simulations. The results demonstrate that the use of the UKF estimator produces a superior estimation of the system compared with the use of the EKF. An adaptive PID controller is also developed and used in system conjunction with the estimator to regulate its voltage and current against the number of loads. Deviation in load parameters hamper the function of the MG system. The performance of the developed controller is also evaluated against number of loads. Results indicate the controller provides a more stable and high-tracking performance with the inclusion of the UKF in the system

    Optimal dispatch of uncertain energy resources

    Get PDF
    The future of the electric grid requires advanced control technologies to reliably integrate high level of renewable generation and residential and small commercial distributed energy resources (DERs). Flexible loads are known as a vital component of future power systems with the potential to boost the overall system efficiency. Recent work has expanded the role of flexible and controllable energy resources, such as energy storage and dispatchable demand, to regulate power imbalances and stabilize grid frequency. This leads to the DER aggregators to develop concepts such as the virtual energy storage system (VESS). VESSs aggregate the flexible loads and energy resources and dispatch them akin to a grid-scale battery to provide flexibility to the system operator. Since the level of flexibility from aggregated DERs is uncertain and time varying, the VESSs’ dispatch can be challenging. To optimally dispatch uncertain, energy-constrained reserves, model predictive control offers a viable tool to develop an appropriate trade-off between closed-loop performance and robustness of the dispatch. To improve the system operation, flexible VESSs can be formulated probabilistically and can be realized with chance-constrained model predictive control. The large-scale deployment of flexible loads needs to carefully consider the existing regulation schemes in power systems, i.e., generator droop control. In this work first, we investigate the complex nature of system-wide frequency stability from time-delays in actuation of dispatchable loads. Then, we studied the robustness and performance trade-offs in receding horizon control with uncertain energy resources. The uncertainty studied herein is associated with estimating the capacity of and the estimated state of charge from an aggregation of DERs. The concept of uncertain flexible resources in markets leads to maximizing capacity bids or control authority which leads to dynamic capacity saturation (DCS) of flexible resources. We show there exists a sensitive trade-off between robustness of the optimized dispatch and closed-loop system performance and sacrificing some robustness in the dispatch of the uncertain energy capacity can significantly improve system performance. We proposed and formulated a risk-based chance constrained MPC (RB-CC-MPC) to co-optimize the operational risk of prematurely saturating the virtual energy storage system against deviating generators from their scheduled set-point. On a fast minutely timescale, the RB-CC-MPC coordinates energy-constrained virtual resources to minimize unscheduled participation of ramp-rate limited generators for balancing variability from renewable generation, while taking into account grid conditions. We show under the proposed method it is possible to improve the performance of the controller over conventional distributionally robust methods by more than 20%. Moreover, a hardware-in-the-loop (HIL) simulation of a cyber-physical system consisting of packetized energy management (PEM) enabled DERs, flexible VESSs and transmission grid is developed in this work. A predictive, energy-constrained dispatch of aggregated PEM-enabled DERs is formulated, implemented, and validated on the HIL cyber-physical platform. The experimental results demonstrate that the existing control schemes, such as AGC, dispatch VESSs without regard to their energy state, which leads to unexpected capacity saturation. By accounting for the energy states of VESSs, model-predictive control (MPC) can optimally dispatch conventional generators and VESSs to overcome disturbances while avoiding undesired capacity saturation. The results show the improvement in dynamics by using MPC over conventional AGC and droop for a system with energy-constrained resources

    Transactive energy system

    Get PDF
    The rising of distributed energy resource (DER) e.g. rooftop PV solar system, wind system and energy storage system, and load demand response bring both opportunities and challenges to the power grid. Coordinating decentralised DERs is important. The purpose of transactive energy (TE) system is to coordinate DERs at the distribution level and encourage consumers and prosumers to participate in electricity market by providing economic incentives. TE system enables customers and prosumers to sell the surplus energy to their neighbours. This thesis represents research on TE system in aspects of structure, technology, economics and participants. The impact of TE system in Australia’s electrical standard and electricity business mode is also explored. Moreover, based on research findings, a TE system model for Australia is proposed. The key findings of this project are: • TE System is a method to relieve electricity congestion. • The power flow (distribution level) and transaction in TE system are bidirectional. • TE system is customer-oriented and offers more choices to customers/prosumers. • The new distribution system operator (DSO) plays a key role in coordinating DERs and end-users. • Undertaking a TE system demonstration project in Australia is suggested

    Impact of intergrating teebus hydro power on the unbalanced distribution MV network

    Get PDF
    Small hydro power sources have been identified as one of the renewable energy technologies that the South African government is focusing on in order to generate more electricity from renewable/independent resources. Due to the low carbon output of most renewable energy technologies and the carbon intensive power generation technologies that are currently being used in South Africa e.g. Hydro, coal, gas, and etc. further pressure is increasing to incorporate cleaner forms of generation. In 2002 a study focusing on the hydropower potential was compiled providing an assessment according to conventional and unconventional possibilities for all the provinces. Nowadays, the power electricity demand is growing fast and one of the main tasks for power engineers is to generate electricity from renewable energy sources to overcome this increase in the energy consumption and at the same time reduce environmental impact of power generation. Eskom Distribution Eastern Cape Operating Unit (ECOU) was requested to investigate the feasibility of connecting a small hydro power scheme located in the Teebus area in the Eastern Cape. The Eastern Cape in particular, was identified as potentially the most productive area for small hydroelectric development in South Africa for both the grid connected and off grid applications. These network conditions are in contrast to the South African electricity network where long radial feeders with low X/R ratios and high resistance, spanning large geographic areas, give rise to low voltages on the network. Practical simulation networks have been used to test the conditions set out in the South African Grid Code/NERSA standard and to test the impact of connecting small hydro generation onto the unbalanced distribution network. These networks are representative of various real case scenarios of the South African distribution network. Most of the findings from the simulations were consistent with what was expected when comparing with other literatures. From the simulation results it was seen that the performance of the variable speed generators were superior to that of the fixed speed generators during transient conditions. It was also seen that the weakness of the network had a negative effect on the stability of the system. It is also noted that the stability studies are a necessity when connecting the generators to a network and that each case should be reviewed individually. The fundamental cause of voltage instability is identified as incapability of combined distribution and generation system to meet excessive load demand in either real power or reactive power form

    On an Information and Control Architecture for Future Electric Energy Systems

    Full text link
    This paper presents considerations towards an information and control architecture for future electric energy systems driven by massive changes resulting from the societal goals of decarbonization and electrification. This paper describes the new requirements and challenges of an extended information and control architecture that need to be addressed for continued reliable delivery of electricity. It identifies several new actionable information and control loops, along with their spatial and temporal scales of operation, which can together meet the needs of future grids and enable deep decarbonization of the electricity sector. The present architecture of electric power grids designed in a different era is thereby extensible to allow the incorporation of increased renewables and other emerging electric loads.Comment: This paper is accepted, to appear in the Proceedings of the IEE

    Enhancing transient performance of microgeneration-dense low voltage distribution networks

    Get PDF
    In addition to other measures such as energy saving, the adoption of microgeneration driven by renewable and low carbon energy resources is expected to have the potential to reduce losses associated with producing and delivering electricity, combat climate change and fuel poverty, and improve the overall system performance. However, incorporating a substantial volume of microgeneration within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralised generation technologies. So it becomes vital for such substantial amount of microgeneration among other decentralised resources to be controlled in the way that local constraints are mitigated and their aggregated response supports the wider system. In addition, the characteristic behaviour of connected microgeneration requires to be understood under different system conditions to ascertain measures of risk and resilience, and to ensure the benefits of microgeneration to be delivered. Therefore, this thesis provides three main valuable contributions of future attainment of sustainable power systems. Firstly, a new conceptual control structure for a system incorporating a high penetration of microgeneration and dynamic load is developed. Secondly, the resilience level of the host distribution network as well as the resilience levels of microgeneration during large transient disturbances is evaluated and quantified. Thirdly, a technical solution that can support enhanced transient stability of a large penetration of LV connected microgeneration is introduced and demonstrated. A control system structure concept based on “a cell concept” is introduced to manage the spread of heavy volumes of distributed energy resources (DERs) including microgeneration such that the useful features of DER units in support of the wider system can be exploited, and the threats to system performance presented by significant connection of passive and unpredictable DERs can be mitigated. The structure also provides simpler and better coordinated communication with DERs by allowing the inputs from DERs and groups of cells to be transferred as collective actions when it moves from a local to a wider system level. The anticipated transient performance problems surrounding the integration of microgeneration on a large basis within a typical urban distribution network are addressed. Three areas of studies are tackled; the increased fault level due to the present of microgeneration, the collective impact of LV connected microgeneration on traditional LV protection performance, and the system fault ride through capabilities of LV connected microgeneration interfaced by different technologies. The possible local impacts of unnecessary disconnection of large amount of microgeneration on the performance of the host distribution network are also quantified. The thesis proposes a network solution based on using resistive-type superconducting fault current limiters (RSFCLs) to prevent the impact of local transient disturbances from expanding and enhance the fault ride through capabilities of a high penetration of microgeneration connected to low voltage distribution networks. A new mathematical approach is developed within the thesis to identify at which condition RSFCL can be used as a significant device to maintain the transient stability of large numbers of LV connected microgeneration. The approach is based on equation solution to determine the minimum required value of the resistive element of RSFCL to maintain microgeneration transient stability, and at the same time additional headroom against switchgear short-circuit ratings is provided. Remote disturbances or a failure to clear remote faults quickly are shown to no longer result in complete unnecessary disconnection of substantial amount of microgeneration

    Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems

    Get PDF
    Distributed generation (DG) systems are the key for implementation of micro/smart grids of today, and energy storages are becoming an integral part of such systems. Advancement in technology now ensures power storage and delivery from few seconds to days/months. But an effective management of the distributed energy resources and its storage systems is essential to ensure efficient operation and long service life. This chapter presents the issues faced in integrating renewables in DG and the growing necessity of energy storages. Types of energy storage systems (ESSs) and their applications have also been detailed. A brief literature study on energy management of ESSs in distributed microgrids has also been included. This is followed by a simple case study to illustrate the need and effect of management of ESSs in distributed systems
    • …
    corecore