790 research outputs found

    Trade-off between power and bandwidth consumption in a reconfigurable xhaul network architecture

    Get PDF
    The increasing number of wireless devices, the high required traffic bandwidth, and power consumption will lead to a revolution of mobile access networks, which is not a simple evolution of traditional ones. Cloud radio access network technologies are seen as promising solution in order to deal with the heavy requirements defined for 5G mobile networks. The introduction of the common public radio interface (CPRI) technology allows for a centralization in BaseBand unit (BBU) of some access functions with advantages in terms of power consumption saving when switching off algorithms are implemented. Unfortunately, the advantages of the CPRI technology are to be paid with an increase in required bandwidth to carry the traffic between the BBU and the radio remote unit (RRU), in which only the radio functions are implemented. For this reason, a tradeoff solution between power and bandwidth consumption is proposed and evaluated. The proposed solution consists of: 1) handling the traffic generated by the users through both RRU and traditional radio base stations (RBS) and 2) carrying the traffic generated by the RRU and RBS (CPRI and Ethernet flows) with a reconfigurable network. The proposed solution is investigated under the lognormal spatial traffic distribution assumption. After proposing resource dimensioning analytical models validated by simulation, we show how the sum of the bandwidth and power consumption may be minimized with the deployment of a given percentage of RRU. For instance we show how in 5G traffic scenarios this percentage can vary from 30% to 50% according to total traffic amount handled by a switching node of the reconfigurable network

    Minimum Cost Design of Cellular Networks in Rural Areas with UAVs, Optical Rings, Solar Panels and Batteries

    Get PDF
    Bringing the cellular connectivity in rural zones is a big challenge, due to the large installation costs that are incurred when a legacy cellular network based on fixed Base Stations (BSs) is deployed. To tackle this aspect, we consider an alternative architecture composed of UAV-based BSs to provide cellular coverage, ground sites to connect the UAVs with the rest of the network, Solar Panels (SPs) and batteries to recharge the UAVs and to power the ground sites, and a ring of optical fiber links to connect the installed sites. We then target the minimization of the installation costs for the considered UAV-based cellular architecture, by taking into account the constraints of UAVs coverage, SPs energy consumption, levels of the batteries and the deployment of the optical ring. After providing the problem formulation, we derive an innovative methodology to ensure that a single ring of installed optical fibers is deployed. Moreover, we propose a new algorithm, called DIARIZE, to practically tackle the problem. Our results, obtained over a set of representative rural scenarios, show that DIARIZE performs very close to the optimal solution, and in general outperforms a reference design based on fixed BSs

    Technical, financial and environmental evaluation of 4G long term evolution: advanced with femtocell base stations

    Get PDF
    Recent advances in mobile communication technology have allowed for considerable growth both in traffic and user numbers. However, in order to maintain acceptable quality of experience and service levels with increasing network capacity requirements, a mobile communications operator is challenged with high investment costs and high operating costs. Cost effectiveness and environmental sustainability are two major factors a mobile telecommunications operator must take into account in order to maintain its network planning techniques ready for the accelerated growth of traffic in future mobile networks. With the incoming LTE-Advanced system and with the increasing popularity of femtocells, it becomes necessary to evaluate and quantify the economic viability and sustainability of this new type of base station when used as a standalone deployment option, as well as when used in a two-tier network. Therefore, different cases were used with a deployment method based on capacity used with a varying non-uniform traffic distribution in order to assess the future resistance and flexibility of this proposed solution. A comparison was made between macro cell coverage only, full femtocell coverage and a two-tier joint solution. Our study has concluded that for low capacity demands, the best approach is a two-tier network with femtocells used for indoor backhaul. A joint solution also allows for the cost-effective resolution of indoor coverage issues. According to our future capacity requirements projected, it has been concluded that a full femtocell deployment, by far, the most economically viable option. A method for the quantification and suppression of carbon emissions due to energy consumption is also proposed, through which we studied and estimated the price for the achievement of a zero carbon emissions network.Os recentes avanços na tecnologia de comunicações móveis têm permitido um crescimento considerável da indústria, tanto em termos de tráfego como em número de clientes. No entanto, para conseguir manter uma qualidade de experiência aceitável e com elevada qualidade de serviço, um operador de comunicações móveis depara-se com elevados custos de investimento e operação. A eficácia em termos de custos e a pegada ambiental são dois factores que, entre outros, um operador de telecomunicações móveis deve ter em conta de modo a manter as suas técnicas de planeamento de rede preparadas para o acelerado crescimento do tráfego nas redes móveis do futuro. Com a chegada próxima do LTE-Advanced e com a crescente popularidade de femtocells, torna-se necessário avaliar e quantificar a viabilidade económica e o potencial de poupança de energia deste novo tipo de estação de base quando utilizado como uma opção de implantação autónoma, ou quando utilizado para suporte de uma rede de macro células. Dessa forma, foram dimensionados diferentes casos de implementação baseados nos requisitos de capacidade. Foi também aplicada uma distribuição de tráfego não-uniforme, a fim de avaliar a resistência ao futuro e a flexibilidade de aplicação desta solução proposta. Fez-se uma comparação entre uma implementação apenas com recurso a macro células, uma implementação feita completamente com recurso a femtocells e uma solução conjunta destes dois tipos de estação-base. O estudo concluiu que, para requisitos de baixa capacidade, a melhor implementação é uma rede de duas camadas, com femtocells utilizadas para o backhaul das ligações indoor. A solução conjunta permite ainda a resolução eficaz de problemas de cobertura no interior de edifícios. De acordo com a nossa projecção das necessidades futuras de capacidade concluiu-se que a implementação de uma rede apenas com recurso a femtocells é a melhor opção, do ponto de vista da capacidade, financeiro e ambiental. Também foi apresentada uma metodologia para quantificar a pegada ambiental devida ao consumo de energia, através da qual se estudou e estimou os custos associados à implementação de uma rede com pegada ambiental nula
    corecore