7,601 research outputs found

    Modularizing and Specifying Protocols among Threads

    Full text link
    We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL) based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    The role of concurrency in an evolutionary view of programming abstractions

    Full text link
    In this paper we examine how concurrency has been embodied in mainstream programming languages. In particular, we rely on the evolutionary talking borrowed from biology to discuss major historical landmarks and crucial concepts that shaped the development of programming languages. We examine the general development process, occasionally deepening into some language, trying to uncover evolutionary lineages related to specific programming traits. We mainly focus on concurrency, discussing the different abstraction levels involved in present-day concurrent programming and emphasizing the fact that they correspond to different levels of explanation. We then comment on the role of theoretical research on the quest for suitable programming abstractions, recalling the importance of changing the working framework and the way of looking every so often. This paper is not meant to be a survey of modern mainstream programming languages: it would be very incomplete in that sense. It aims instead at pointing out a number of remarks and connect them under an evolutionary perspective, in order to grasp a unifying, but not simplistic, view of the programming languages development process

    Concurrent object-oriented programming: The MP-Eiffel approach

    Get PDF
    This article evaluates several possible approaches for integrating concurrency into object-oriented programming languages, presenting afterwards, a new language named MP-Eiffel. MP-Eiffel was designed attempting to include all the essential properties of both concurrent and object-oriented programming with simplicity and safety. A special care was taken to achieve the orthogonality of all the language mechanisms, allowing their joint use without unsafe side-effects (such as inheritance anomalies)

    Modal logics for reasoning about object-based component composition

    Get PDF
    Component-oriented development of software supports the adaptability and maintainability of large systems, in particular if requirements change over time and parts of a system have to be modified or replaced. The software architecture in such systems can be described by components and their composition. In order to describe larger architectures, the composition concept becomes crucial. We will present a formal framework for component composition for object-based software development. The deployment of modal logics for defining components and component composition will allow us to reason about and prove properties of components and compositions
    corecore