1,071 research outputs found

    Narrowing Trees for Syntactically Deterministic Conditional Term Rewriting Systems

    Get PDF
    A narrowing tree for a constructor term rewriting system and a pair of terms is a finite representation for the space of all possible innermost-narrowing derivations that start with the pair and end with non-narrowable terms. Narrowing trees have grammar representations that can be considered regular tree grammars. Innermost narrowing is a counterpart of constructor-based rewriting, and thus, narrowing trees can be used in analyzing constructor-based rewriting to normal forms. In this paper, using grammar representations, we extend narrowing trees to syntactically deterministic conditional term rewriting systems that are constructor systems. We show that narrowing trees are useful to prove two properties of a normal conditional term rewriting system: one is infeasibility of conditional critical pairs and the other is quasi-reducibility

    Independent AND-parallel implementation of narrowing

    Get PDF
    We present a parallel graph narrowing machine, which is used to implement a functional logic language on a shared memory multiprocessor. It is an extensión of an abstract machine for a purely functional language. The result is a programmed graph reduction machine which integrates the mechanisms of unification, backtracking, and independent and-parallelism. In the machine, the subexpressions of an expression can run in parallel. In the case of backtracking, the structure of an expression is used to avoid the reevaluation of subexpressions as far as possible. Deterministic computations are detected. Their results are maintained and need not be reevaluated after backtracking

    Needed Computations Shortcutting Needed Steps

    Get PDF
    We define a compilation scheme for a constructor-based, strongly-sequential, graph rewriting system which shortcuts some needed steps. The object code is another constructor-based graph rewriting system. This system is normalizing for the original system when using an innermost strategy. Consequently, the object code can be easily implemented by eager functions in a variety of programming languages. We modify this object code in a way that avoids total or partial construction of the contracta of some needed steps of a computation. When computing normal forms in this way, both memory consumption and execution time are reduced compared to ordinary rewriting computations in the original system.Comment: In Proceedings TERMGRAPH 2014, arXiv:1505.0681
    • …
    corecore