2,465 research outputs found

    Constructive Theory of Banach algebras

    Get PDF
    We present a way to organize a constructive development of the theory of Banach algebras, inspired by works of Cohen, de Bruijn and Bishop. We illustrate this by giving elementary proofs of Wiener's result on the inverse of Fourier series and Wiener's Tauberian Theorem, in a sequel to this paper we show how this can be used in a localic, or point-free, description of the spectrum of a Banach algebra

    Localic Metric spaces and the localic Gelfand duality

    Full text link
    In this paper we prove, as conjectured by B.Banachewski and C.J.Mulvey, that the constructive Gelfand duality can be extended into a duality between compact regular locales and unital abelian localic C*-algebras. In order to do so we develop a constructive theory of localic metric spaces and localic Banach spaces, we study the notion of localic completion of such objects and the behaviour of these constructions with respect to pull-back along geometric morphisms.Comment: 57 page

    Constructive Gelfand duality for C*-algebras

    Get PDF
    We present a constructive proof of Gelfand duality for C*-algebras by reducing the problem to Gelfand duality for real C*-algebras.Comment: 6page

    Locating Ax, where A is a subspace of B(H)

    Full text link
    Let A be a linear space of operators on a Hilbert space H, x a vector in H, and Ax the subspace of H comprising all vectors of the form Tx with T in A. We discuss, within a Bishop-style constructive framework, conditions under which the projection [Ax] of H on the closure of Ax exists. We derive a general result that leads directly to both the open mapping theorem and our main theorem on the existence of [Ax]

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page
    • …
    corecore