6,403 research outputs found

    Accurate macroscale modelling of spatial dynamics in multiple dimensions

    Full text link
    Developments in dynamical systems theory provides new support for the macroscale modelling of pdes and other microscale systems such as Lattice Boltzmann, Monte Carlo or Molecular Dynamics simulators. By systematically resolving subgrid microscale dynamics the dynamical systems approach constructs accurate closures of macroscale discretisations of the microscale system. Here we specifically explore reaction-diffusion problems in two spatial dimensions as a prototype of generic systems in multiple dimensions. Our approach unifies into one the modelling of systems by a type of finite elements, and the `equation free' macroscale modelling of microscale simulators efficiently executing only on small patches of the spatial domain. Centre manifold theory ensures that a closed model exist on the macroscale grid, is emergent, and is systematically approximated. Dividing space either into overlapping finite elements or into spatially separated small patches, the specially crafted inter-element/patch coupling also ensures that the constructed discretisations are consistent with the microscale system/PDE to as high an order as desired. Computer algebra handles the considerable algebraic details as seen in the specific application to the Ginzburg--Landau PDE. However, higher order models in multiple dimensions require a mixed numerical and algebraic approach that is also developed. The modelling here may be straightforwardly adapted to a wide class of reaction-diffusion PDEs and lattice equations in multiple space dimensions. When applied to patches of microscopic simulations our coupling conditions promise efficient macroscale simulation.Comment: some figures with 3D interaction when viewed in Acrobat Reader. arXiv admin note: substantial text overlap with arXiv:0904.085

    Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization

    Get PDF
    We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (LL^\infty) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution HH) minimizing the L2L^2 norm of the source terms; its (pre-)computation involves minimizing O(Hd)\mathcal{O}(H^{-d}) quadratic (cell) problems on (super-)localized sub-domains of size O(Hln(1/H))\mathcal{O}(H \ln (1/ H)). The resulting localized linear systems remain sparse and banded. The resulting interpolation basis functions are biharmonic for d3d\leq 3, and polyharmonic for d4d\geq 4, for the operator -\diiv(a\nabla \cdot) and can be seen as a generalization of polyharmonic splines to differential operators with arbitrary rough coefficients. The accuracy of the method (O(H)\mathcal{O}(H) in energy norm and independent from aspect ratios of the mesh formed by the scattered points) is established via the introduction of a new class of higher-order Poincar\'{e} inequalities. The method bypasses (pre-)computations on the full domain and naturally generalizes to time dependent problems, it also provides a natural solution to the inverse problem of recovering the solution of a divergence form elliptic equation from a finite number of point measurements.Comment: ESAIM: Mathematical Modelling and Numerical Analysis. Special issue (2013

    Explicit bounds on eigenfunctions and spectral functions on manifolds hyperbolic near a point

    Full text link
    We derive explicit bounds for the remainder term in the local Weyl law for locally hyperbolic manifolds, we also give the estimates of the derivative of this remainder. We use these to obtain explicit bounds for the C^k-norms of the L^2-normalised eigenfunctions in the case spectrum of the Laplacian is discrete, e.g. for closed Riemannian manifolds. We also derive bounds for the local heat trace. Our estimates are purely local and therefore also hold for any manifold at points near which the metric is locally hyperbolic.Comment: 23 pages, 2 figure

    Compressive Wave Computation

    Full text link
    This paper considers large-scale simulations of wave propagation phenomena. We argue that it is possible to accurately compute a wavefield by decomposing it onto a largely incomplete set of eigenfunctions of the Helmholtz operator, chosen at random, and that this provides a natural way of parallelizing wave simulations for memory-intensive applications. This paper shows that L1-Helmholtz recovery makes sense for wave computation, and identifies a regime in which it is provably effective: the one-dimensional wave equation with coefficients of small bounded variation. Under suitable assumptions we show that the number of eigenfunctions needed to evolve a sparse wavefield defined on N points, accurately with very high probability, is bounded by C log(N) log(log(N)), where C is related to the desired accuracy and can be made to grow at a much slower rate than N when the solution is sparse. The PDE estimates that underlie this result are new to the authors' knowledge and may be of independent mathematical interest; they include an L1 estimate for the wave equation, an estimate of extension of eigenfunctions, and a bound for eigenvalue gaps in Sturm-Liouville problems. Numerical examples are presented in one spatial dimension and show that as few as 10 percents of all eigenfunctions can suffice for accurate results. Finally, we argue that the compressive viewpoint suggests a competitive parallel algorithm for an adjoint-state inversion method in reflection seismology.Comment: 45 pages, 4 figure

    Sparse Discrete Ordinates Method in Radiative Transfer

    Get PDF
    The stationary monochromatic radiative transfer equation (RTE) is a partial differential transport equation stated on a five-dimensional phase space, the Cartesian product of physical and angular domain. We solve the RTE with a Galerkin FEM in physical space and collocation in angle, corresponding to a discrete ordinates method (DOM). To reduce the complexity of the problem and to avoid the "curse of dimension", we adapt the sparse grid combination technique to the solution space of the RTE and show that we obtain a sparse DOM which uses essentially only as many degrees of freedom as required for a purely spatial transport problem. For smooth solutions, the convergence rates deteriorate only by a logarithmic factor. We compare the sparse DOM to the standard full DOM and a sparse tensor product approach developed earlier with Galerkin FEM in physical space and a spectral method in angle. Numerical experiments confirm our finding
    corecore