336,119 research outputs found

    Global and local Complexity in weakly chaotic dynamical systems

    Full text link
    In a topological dynamical system the complexity of an orbit is a measure of the amount of information (algorithmic information content) that is necessary to describe the orbit. This indicator is invariant up to topological conjugation. We consider this indicator of local complexity of the dynamics and provide different examples of its behavior, showing how it can be useful to characterize various kind of weakly chaotic dynamics. We also provide criteria to find systems with non trivial orbit complexity (systems where the description of the whole orbit requires an infinite amount of information). We consider also a global indicator of the complexity of the system. This global indicator generalizes the topological entropy, taking into account systems were the number of essentially different orbits increases less than exponentially. Then we prove that if the system is constructive (roughly speaking: if the map can be defined up to any given accuracy using a finite amount of information) the orbit complexity is everywhere less or equal than the generalized topological entropy. Conversely there are compact non constructive examples where the inequality is reversed, suggesting that this notion comes out naturally in this kind of complexity questions.Comment: 23 page

    The Dimensions of Individual Strings and Sequences

    Get PDF
    A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0,1]. Sequences that are random (in the sense of Martin-Lof) have dimension 1, while sequences that are decidable, \Sigma^0_1, or \Pi^0_1 have dimension 0. It is shown that for every \Delta^0_2-computable real number \alpha in [0,1] there is a \Delta^0_2 sequence S such that \dim(S) = \alpha. A discrete version of constructive dimension is also developed using termgales, which are supergale-like functions that bet on the terminations of (finite, binary) strings as well as on their successive bits. This discrete dimension is used to assign each individual string w a dimension, which is a nonnegative real number dim(w). The dimension of a sequence is shown to be the limit infimum of the dimensions of its prefixes. The Kolmogorov complexity of a string is proven to be the product of its length and its dimension. This gives a new characterization of algorithmic information and a new proof of Mayordomo's recent theorem stating that the dimension of a sequence is the limit infimum of the average Kolmogorov complexity of its first n bits. Every sequence that is random relative to any computable sequence of coin-toss biases that converge to a real number \beta in (0,1) is shown to have dimension \H(\beta), the binary entropy of \beta.Comment: 31 page

    Construction of self-dual normal bases and their complexity

    Get PDF
    Recent work of Pickett has given a construction of self-dual normal bases for extensions of finite fields, whenever they exist. In this article we present these results in an explicit and constructive manner and apply them, through computer search, to identify the lowest complexity of self-dual normal bases for extensions of low degree. Comparisons to similar searches amongst normal bases show that the lowest complexity is often achieved from a self-dual normal basis

    Towards a complexity theory for the congested clique

    Full text link
    The congested clique model of distributed computing has been receiving attention as a model for densely connected distributed systems. While there has been significant progress on the side of upper bounds, we have very little in terms of lower bounds for the congested clique; indeed, it is now know that proving explicit congested clique lower bounds is as difficult as proving circuit lower bounds. In this work, we use various more traditional complexity-theoretic tools to build a clearer picture of the complexity landscape of the congested clique: -- Nondeterminism and beyond: We introduce the nondeterministic congested clique model (analogous to NP) and show that there is a natural canonical problem family that captures all problems solvable in constant time with nondeterministic algorithms. We further generalise these notions by introducing the constant-round decision hierarchy (analogous to the polynomial hierarchy). -- Non-constructive lower bounds: We lift the prior non-uniform counting arguments to a general technique for proving non-constructive uniform lower bounds for the congested clique. In particular, we prove a time hierarchy theorem for the congested clique, showing that there are decision problems of essentially all complexities, both in the deterministic and nondeterministic settings. -- Fine-grained complexity: We map out relationships between various natural problems in the congested clique model, arguing that a reduction-based complexity theory currently gives us a fairly good picture of the complexity landscape of the congested clique
    • …
    corecore