1,646 research outputs found

    Exhaustible sets in higher-type computation

    Full text link
    We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The Cantor space of infinite sequences of binary digits is known to be searchable. Searchable sets are exhaustible, and we show that the converse also holds for sets of hereditarily total elements in the hierarchy of continuous functionals; moreover, a selection functional can be constructed uniformly from a quantification functional. We prove that searchable sets are closed under intersections with decidable sets, and under the formation of computable images and of finite and countably infinite products. This is related to the fact, established here, that exhaustible sets are topologically compact. We obtain a complete description of exhaustible total sets by developing a computational version of a topological Arzela--Ascoli type characterization of compact subsets of function spaces. We also show that, in the non-empty case, they are precisely the computable images of the Cantor space. The emphasis of this paper is on the theory of exhaustible and searchable sets, but we also briefly sketch applications

    Generic Rigidity Matroids with Dilworth Truncations

    Get PDF
    We prove that the linear matroid that defines generic rigidity of dd-dimensional body-rod-bar frameworks (i.e., structures consisting of disjoint bodies and rods mutually linked by bars) can be obtained from the union of (d+12){d+1 \choose 2} graphic matroids by applying variants of Dilworth truncation nrn_r times, where nrn_r denotes the number of rods. This leads to an alternative proof of Tay's combinatorial characterizations of generic rigidity of rod-bar frameworks and that of identified body-hinge frameworks

    Threshold graphs, shifted complexes, and graphical complexes

    Get PDF
    We consider a variety of connections between threshold graphs, shifted complexes, and simplicial complexes naturally formed from a graph. These graphical complexes include the independent set, neighborhood, and dominance complexes. We present a number of structural results and relations among them including new characterizations of the class of threshold graphs.Comment: 9 pages, 2 figures; to appear in Discrete Mathematic

    A realizability semantics for inductive formal topologies, Church's Thesis and Axiom of Choice

    Get PDF
    We present a Kleene realizability semantics for the intensional level of the Minimalist Foundation, for short mtt, extended with inductively generated formal topologies, Church's thesis and axiom of choice. This semantics is an extension of the one used to show consistency of the intensional level of the Minimalist Foundation with the axiom of choice and formal Church's thesis in previous work. A main novelty here is that such a semantics is formalized in a constructive theory represented by Aczel's constructive set theory CZF extended with the regular extension axiom

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page
    corecore