6,588 research outputs found

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    Upper Tail Estimates with Combinatorial Proofs

    Get PDF
    We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one by Impagliazzo and Kabanets (RANDOM, 2010). In particular, we prove a randomized version of the hitting property of expander random walks and apply it to obtain a concentration bound for expander random walks which is essentially optimal for small deviations and a large number of steps. At the same time, we present a simpler proof that still yields a "right" bound settling a question asked by Impagliazzo and Kabanets. Next, we obtain a simple upper tail bound for polynomials with input variables in [0,1][0, 1] which are not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets. The resulting bound is used by Holenstein and Sinha (FOCS, 2012) in the proof of a lower bound for the number of calls in a black-box construction of a pseudorandom generator from a one-way function. We then show that the same technique yields the upper tail bound for the number of copies of a fixed graph in an Erd\H{o}s-R\'enyi random graph, matching the one given by Janson, Oleszkiewicz and Ruci\'nski (Israel J. Math, 2002).Comment: Full version of the paper from STACS 201
    • …
    corecore