7 research outputs found

    Constructive Preference Elicitation over Hybrid Combinatorial Spaces

    Full text link
    Preference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.Comment: AAAI 2018, computing methodologies, machine learning, learning paradigms, supervised learning, structured output

    Decomposition Strategies for Constructive Preference Elicitation

    Full text link
    We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over very large decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned itera tively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning user preferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.Comment: Accepted at the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18

    Efficient exact computation of setwise minimax regret for interactive preference elicitation

    Get PDF
    A key issue in artificial intelligence methods for interactive preference elicitation is choosing at each stage an appropriate query to the user, in order to find a near-optimal solution as quickly as possible. A theoretically attractive method is to choose a query that minimises max setwise regret (which corresponds to the worst case loss response in terms of value of information). We focus here on the situation in which the choices are represented explicitly in a database, and with a model of user utility as a weighted sum of the criteria; in this case when the user makes a choice, an agent learns a linear constraint on the unknown vector of weights. We develop an algorithmic method for computing minimax setwise regret for this form of preference model, by making use of a SAT solver with cardinality constraints to prune the search space, and computing max setwise regret using an extreme points method. Our experimental results demonstrate the feasibility of the approach and the very substantial speed up over the state of the art

    Constructive preference elicitation for multiple users with setwise max-margin

    No full text
    In this paper we consider the problem of simultaneously eliciting the preferences of a group of users in an interactive way. We focus on constructive recommendation tasks, where the instance to be recommended should be synthesized by searching in a constrained configuration space rather than choosing among a set of pre-determined options. We adopt a setwise max-margin optimization method, that can be viewed as a generalization of max-margin learning to sets, supporting the identification of informative questions and encouraging sparsity in the parameter space. We extend setwise max-margin to multiple users and we provide strategies for choosing the user to be queried next and identifying an informative query to ask. At each stage of the interaction, each user is associated with a set of parameter weights (a sort of alternative options for the unknown user utility) that can be used to identify “similar” users and to propagate preference information between them. We present simulation results evaluating the effectiveness of our procedure, showing that our approach compares favorably with respect to straightforward adaptations in a multi-user setting of elicitation methods conceived for single users.status: publishe

    1995-1999 Brock News

    Get PDF
    A compilation of the administration newspaper, Brock News, for the years 1995 through 1999. It had previously been titled Brock Campus News and preceding that, The Blue Badger

    1990-1995 Brock Campus News

    Get PDF
    A compilation of the administration newspaper, Brock Campus News, for the years 1990 through 1995. It had previously been titled The Blue Badger
    corecore