5,746 research outputs found

    Localic completion of uniform spaces

    Full text link
    We extend the notion of localic completion of generalised metric spaces by Steven Vickers to the setting of generalised uniform spaces. A generalised uniform space (gus) is a set X equipped with a family of generalised metrics on X, where a generalised metric on X is a map from the product of X to the upper reals satisfying zero self-distance law and triangle inequality. For a symmetric generalised uniform space, the localic completion lifts its generalised uniform structure to a point-free generalised uniform structure. This point-free structure induces a complete generalised uniform structure on the set of formal points of the localic completion that gives the standard completion of the original gus with Cauchy filters. We extend the localic completion to a full and faithful functor from the category of locally compact uniform spaces into that of overt locally compact completely regular formal topologies. Moreover, we give an elementary characterisation of the cover of the localic completion of a locally compact uniform space that simplifies the existing characterisation for metric spaces. These results generalise the corresponding results for metric spaces by Erik Palmgren. Furthermore, we show that the localic completion of a symmetric gus is equivalent to the point-free completion of the uniform formal topology associated with the gus. We work in Aczel's constructive set theory CZF with the Regular Extension Axiom. Some of our results also require Countable Choice.Comment: 39 page

    McShane-Whitney extensions in constructive analysis

    Full text link
    Within Bishop-style constructive mathematics we study the classical McShane-Whitney theorem on the extendability of real-valued Lipschitz functions defined on a subset of a metric space. Using a formulation similar to the formulation of McShane-Whitney theorem, we show that the Lipschitz real-valued functions on a totally bounded space are uniformly dense in the set of uniformly continuous functions. Through the introduced notion of a McShane-Whitney pair we describe the constructive content of the original McShane-Whitney extension and examine how the properties of a Lipschitz function defined on the subspace of the pair extend to its McShane-Whitney extensions on the space of the pair. Similar McShane-Whitney pairs and extensions are established for H\"{o}lder functions and ν\nu-continuous functions, where ν\nu is a modulus of continuity. A Lipschitz version of a fundamental corollary of the Hahn-Banach theorem, and the approximate McShane-Whitney theorem are shown

    Computational Problems in Metric Fixed Point Theory and their Weihrauch Degrees

    Full text link
    We study the computational difficulty of the problem of finding fixed points of nonexpansive mappings in uniformly convex Banach spaces. We show that the fixed point sets of computable nonexpansive self-maps of a nonempty, computably weakly closed, convex and bounded subset of a computable real Hilbert space are precisely the nonempty, co-r.e. weakly closed, convex subsets of the domain. A uniform version of this result allows us to determine the Weihrauch degree of the Browder-Goehde-Kirk theorem in computable real Hilbert space: it is equivalent to a closed choice principle, which receives as input a closed, convex and bounded set via negative information in the weak topology and outputs a point in the set, represented in the strong topology. While in finite dimensional uniformly convex Banach spaces, computable nonexpansive mappings always have computable fixed points, on the unit ball in infinite-dimensional separable Hilbert space the Browder-Goehde-Kirk theorem becomes Weihrauch-equivalent to the limit operator, and on the Hilbert cube it is equivalent to Weak Koenig's Lemma. In particular, computable nonexpansive mappings may not have any computable fixed points in infinite dimension. We also study the computational difficulty of the problem of finding rates of convergence for a large class of fixed point iterations, which generalise both Halpern- and Mann-iterations, and prove that the problem of finding rates of convergence already on the unit interval is equivalent to the limit operator.Comment: 44 page
    • …
    corecore