14,538 research outputs found

    A first attempt at constructing genetic programming expressions for EEG classification

    Get PDF
    Proceeding of: 15th International Conference on Artificial Neural Networks ICANN 2005, Poland, 11-15 September, 2005In BCI (Brain Computer Interface) research, the classification of EEG signals is a domain where raw data has to undergo some preprocessing, so that the right attributes for classification are obtained. Several transformational techniques have been used for this purpose: Principal Component Analysis, the Adaptive Autoregressive Model, FFT or Wavelet Transforms, etc. However, it would be useful to automatically build significant attributes appropriate for each particular problem. In this paper, we use Genetic Programming to evolve projections that translate EEG data into a new vectorial space (coordinates of this space being the new attributes), where projected data can be more easily classified. Although our method is applied here in a straightforward way to check for feasibility, it has achieved reasonable classification results that are comparable to those obtained by other state of the art algorithms. In the future, we expect that by choosing carefully primitive functions, Genetic Programming will be able to give original results that cannot be matched by other machine learning classification algorithms.Publicad

    Rerepresenting and Restructuring Domain Theories: A Constructive Induction Approach

    Full text link
    Theory revision integrates inductive learning and background knowledge by combining training examples with a coarse domain theory to produce a more accurate theory. There are two challenges that theory revision and other theory-guided systems face. First, a representation language appropriate for the initial theory may be inappropriate for an improved theory. While the original representation may concisely express the initial theory, a more accurate theory forced to use that same representation may be bulky, cumbersome, and difficult to reach. Second, a theory structure suitable for a coarse domain theory may be insufficient for a fine-tuned theory. Systems that produce only small, local changes to a theory have limited value for accomplishing complex structural alterations that may be required. Consequently, advanced theory-guided learning systems require flexible representation and flexible structure. An analysis of various theory revision systems and theory-guided learning systems reveals specific strengths and weaknesses in terms of these two desired properties. Designed to capture the underlying qualities of each system, a new system uses theory-guided constructive induction. Experiments in three domains show improvement over previous theory-guided systems. This leads to a study of the behavior, limitations, and potential of theory-guided constructive induction.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    The rational stable homology of mapping class groups of universal nil-manifolds

    Get PDF
    We compute the rational stable homology of the automorphism groups of free nilpotent groups. These groups interpolate between the general linear groups over the ring of integers and the automorphism groups of free groups, and we employ functor homology to reduce to the abelian case. As an application, we also compute the rational stable homology of the outer automorphism groups and of the mapping class groups of the associated aspherical nil-manifolds in the TOP, PL, and DIFF categories.Comment: 25 pages, will appear at Annales de l'Institut Fourie

    Generalizing GAMETH: Inference rule procedure..

    Get PDF
    In this paper we present a generalisation of GAMETH framework, that play an important role in identifying crucial knowledge. Thus, we have developed a method based on three phases. In the first phase, we have used GAMETH to identify the set of “reference knowledge”. During the second phase, decision rules are inferred, through rough sets theory, from decision assignments provided by the decision maker(s). In the third phase, a multicriteria classification of “potential crucial knowledge” is performed on the basis of the decision rules that have been collectively identified by the decision maker(s).Knowledge Management; Knowledge Capitalizing; Managing knowledge; crucial knowledge;
    • …
    corecore