699 research outputs found

    A Galois connection between classical and intuitionistic logics. II: Semantics

    Full text link
    Three classes of models of QHC, the joint logic of problems and propositions, are constructed, including a class of subset/sheaf-valued models that is related to solutions of some actual problems (such as solutions of algebraic equations) and combines the familiar Leibniz-Euler-Venn semantics of classical logic with a BHK-type semantics of intuitionistic logic. To test the models, we consider a number of principles and rules, which empirically appear to cover all "sufficiently simple" natural conjectures about the behaviour of the operators ! and ?, and include two hypotheses put forward by Hilbert and Kolmogorov, as formalized in the language of QHC. Each of these turns out to be either derivable in QHC or equivalent to one of only 13 principles and 1 rule, of which 10 principles and 1 rule are conservative over classical and intuitionistic logics. The three classes of models together suffice to confirm the independence of these 10 principles and 1 rule, and to determine the full lattice of implications between them, apart from one potential implication.Comment: 35 pages. v4: Section 4.6 "Summary" is added at the end of the paper. v3: Major revision of a half of v2. The results are improved and rewritten in terms of the meta-logic. The other half of v2 (Euclid's Elements as a theory over QHC) is expected to make part III after a revisio

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page

    The Covering Problem

    Full text link
    An important endeavor in computer science is to understand the expressive power of logical formalisms over discrete structures, such as words. Naturally, "understanding" is not a mathematical notion. This investigation requires therefore a concrete objective to capture this understanding. In the literature, the standard choice for this objective is the membership problem, whose aim is to find a procedure deciding whether an input regular language can be defined in the logic under investigation. This approach was cemented as the right one by the seminal work of Sch\"utzenberger, McNaughton and Papert on first-order logic and has been in use since then. However, membership questions are hard: for several important fragments, researchers have failed in this endeavor despite decades of investigation. In view of recent results on one of the most famous open questions, namely the quantifier alternation hierarchy of first-order logic, an explanation may be that membership is too restrictive as a setting. These new results were indeed obtained by considering more general problems than membership, taking advantage of the increased flexibility of the enriched mathematical setting. This opens a promising research avenue and efforts have been devoted at identifying and solving such problems for natural fragments. Until now however, these problems have been ad hoc, most fragments relying on a specific one. A unique new problem replacing membership as the right one is still missing. The main contribution of this paper is a suitable candidate to play this role: the Covering Problem. We motivate this problem with 3 arguments. First, it admits an elementary set theoretic formulation, similar to membership. Second, we are able to reexplain or generalize all known results with this problem. Third, we develop a mathematical framework and a methodology tailored to the investigation of this problem
    • …
    corecore