13,627 research outputs found

    Constructive Finite Trace Analysis with Linear Temporal Logic.

    Get PDF
    Abstract. We consider linear temporal logic (LTL) for run-time testing over limited time periods. The technical challenge is to check if the finite trace produced by the system under test matches the LTL property. We present a constructive solution to this problem. Our finite trace LTL matching algorithm yields a proof explaining why a match exists. We apply our constructive LTL matching method to check if LTL properties are sufficiently covered by traces resulting from tests

    Interestingness of traces in declarative process mining: The janus LTLPf Approach

    Get PDF
    Declarative process mining is the set of techniques aimed at extracting behavioural constraints from event logs. These constraints are inherently of a reactive nature, in that their activation restricts the occurrence of other activities. In this way, they are prone to the principle of ex falso quod libet: they can be satisfied even when not activated. As a consequence, constraints can be mined that are hardly interesting to users or even potentially misleading. In this paper, we build on the observation that users typically read and write temporal constraints as if-statements with an explicit indication of the activation condition. Our approach is called Janus, because it permits the specification and verification of reactive constraints that, upon activation, look forward into the future and backwards into the past of a trace. Reactive constraints are expressed using Linear-time Temporal Logic with Past on Finite Traces (LTLp f). To mine them out of event logs, we devise a time bi-directional valuation technique based on triplets of automata operating in an on-line fashion. Our solution proves efficient, being at most quadratic w.r.t. trace length, and effective in recognising interestingness of discovered constraints

    Incompleteness of States w.r.t. Traces in Model Checking

    Get PDF
    Cousot and Cousot introduced and studied a general past/future-time specification language, called mu*-calculus, featuring a natural time-symmetric trace-based semantics. The standard state-based semantics of the mu*-calculus is an abstract interpretation of its trace-based semantics, which turns out to be incomplete (i.e., trace-incomplete), even for finite systems. As a consequence, standard state-based model checking of the mu*-calculus is incomplete w.r.t. trace-based model checking. This paper shows that any refinement or abstraction of the domain of sets of states induces a corresponding semantics which is still trace-incomplete for any propositional fragment of the mu*-calculus. This derives from a number of results, one for each incomplete logical/temporal connective of the mu*-calculus, that characterize the structure of models, i.e. transition systems, whose corresponding state-based semantics of the mu*-calculus is trace-complete

    LTLf and LDLf Monitoring: A Technical Report

    Get PDF
    Runtime monitoring is one of the central tasks to provide operational decision support to running business processes, and check on-the-fly whether they comply with constraints and rules. We study runtime monitoring of properties expressed in LTL on finite traces (LTLf) and in its extension LDLf. LDLf is a powerful logic that captures all monadic second order logic on finite traces, which is obtained by combining regular expressions and LTLf, adopting the syntax of propositional dynamic logic (PDL). Interestingly, in spite of its greater expressivity, LDLf has exactly the same computational complexity of LTLf. We show that LDLf is able to capture, in the logic itself, not only the constraints to be monitored, but also the de-facto standard RV-LTL monitors. This makes it possible to declaratively capture monitoring metaconstraints, and check them by relying on usual logical services instead of ad-hoc algorithms. This, in turn, enables to flexibly monitor constraints depending on the monitoring state of other constraints, e.g., "compensation" constraints that are only checked when others are detected to be violated. In addition, we devise a direct translation of LDLf formulas into nondeterministic automata, avoiding to detour to Buechi automata or alternating automata, and we use it to implement a monitoring plug-in for the PROM suite

    Fluent temporal logic for discrete-time event-based models

    Get PDF
    Fluent model checking is an automated technique for verifying that an event-based operational model satisfies some state-based declarative properties. The link between the event-based and state-based formalisms is defined through fluents which are state predicates whose value are determined by the occurrences of initiating and terminating events that make the fluents values become true or false, respectively. The existing fluent temporal logic is convenient for reasoning about untimed event-based models but difficult to use for timed models. The paper extends fluent temporal logic with temporal operators for modelling timed properties of discrete-time event-based models. It presents two approaches that differ on whether the properties model the system state after the occurrence of each event or at a fixed time rate. Model checking of timed properties is made possible by translating them into the existing untimed framework. Copyright 2005 ACM

    Managing LTL properties in Event-B refinement

    Get PDF
    Refinement in Event-B supports the development of systems via proof based step-wise refinement of events. This refinement approach ensures safety properties are preserved, but additional reasoning is required in order to establish liveness and fairness properties. In this paper we present results which allow a closer integration of two formal methods, Event-B and linear temporal logic. In particular we show how a class of temporal logic properties can carry through a refinement chain of machines. Refinement steps can include introduction of new events, event renaming and event splitting. We also identify a general liveness property that holds for the events of the initial system of a refinement chain. The approach will aid developers in enabling them to verify linear temporal logic properties at early stages of a development, knowing they will be preserved at later stages. We illustrate the results via a simple case study
    • …
    corecore