51,261 research outputs found

    Constructive dimension and weak truth-table degrees

    No full text
    submitted to Theory of Computing SystemsThis paper examines the constructive Hausdorff and packing dimensions of weak truth-table degrees. The main result is that every infinite sequence SS with constructive Hausdorff dimension dim(S)\dim(S) and constructive packing dimension \Dim(S) is weak truth-table equivalent to a sequence RR with \dim(R) \geq \dim(S) / \Dim(S) - \epsilon, for arbitrary ϵ>0\epsilon > 0. Furthermore, if \Dim(S) > 0, then \Dim(R) \geq 1 - \epsilon. The reduction thus serves as a \emph{randomness extractor} that increases the algorithmic randomness of SS, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of wtt degrees (and, by extension, Turing degrees). A lower bound of \dim(S) / \Dim(S) is shown to hold for the wtt degree of any sequence SS. A new proof is given of a previously-known zero-one law for the constructive packing dimension of wtt degrees. It is also shown that, for any \emph{regular} sequence SS (that is, \dim(S) = \Dim(S)) such that dim(S)>0\dim(S) > 0, the wtt degree of SS has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a \emph{universal} constructive Hausdorff dimension extractor, and that \emph{bounded} Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Extracting the Kolmogorov Complexity of Strings and Sequences from Sources with Limited Independence

    Get PDF
    An infinite binary sequence has randomness rate at least σ\sigma if, for almost every nn, the Kolmogorov complexity of its prefix of length nn is at least σn\sigma n. It is known that for every rational σ(0,1)\sigma \in (0,1), on one hand, there exists sequences with randomness rate σ\sigma that can not be effectively transformed into a sequence with randomness rate higher than σ\sigma and, on the other hand, any two independent sequences with randomness rate σ\sigma can be transformed into a sequence with randomness rate higher than σ\sigma. We show that the latter result holds even if the two input sequences have linear dependency (which, informally speaking, means that all prefixes of length nn of the two sequences have in common a constant fraction of their information). The similar problem is studied for finite strings. It is shown that from any two strings with sufficiently large Kolmogorov complexity and sufficiently small dependence, one can effectively construct a string that is random even conditioned by any one of the input strings

    ROAM: a Radial-basis-function Optimization Approximation Method for diagnosing the three-dimensional coronal magnetic field

    Get PDF
    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 A˚\AA and 10798 A˚\AA lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analogue. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.Comment: 23 pages, 12 figures, accepted in Frontiers in Astronomy and Space Science
    corecore