8,722 research outputs found

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Constructive dimension and weak truth-table degrees

    No full text
    submitted to Theory of Computing SystemsThis paper examines the constructive Hausdorff and packing dimensions of weak truth-table degrees. The main result is that every infinite sequence SS with constructive Hausdorff dimension dim(S)\dim(S) and constructive packing dimension \Dim(S) is weak truth-table equivalent to a sequence RR with \dim(R) \geq \dim(S) / \Dim(S) - \epsilon, for arbitrary ϵ>0\epsilon > 0. Furthermore, if \Dim(S) > 0, then \Dim(R) \geq 1 - \epsilon. The reduction thus serves as a \emph{randomness extractor} that increases the algorithmic randomness of SS, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of wtt degrees (and, by extension, Turing degrees). A lower bound of \dim(S) / \Dim(S) is shown to hold for the wtt degree of any sequence SS. A new proof is given of a previously-known zero-one law for the constructive packing dimension of wtt degrees. It is also shown that, for any \emph{regular} sequence SS (that is, \dim(S) = \Dim(S)) such that dim(S)>0\dim(S) > 0, the wtt degree of SS has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a \emph{universal} constructive Hausdorff dimension extractor, and that \emph{bounded} Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi
    corecore