4,936 research outputs found

    The dendritic density field of a cortical pyramidal cell

    Get PDF
    Much is known about the computation in individual neurons in the cortical column. Also, the selective connectivity between many cortical neuron types has been studied in great detail. However, due to the complexity of this microcircuitry its functional role within the cortical column remains a mystery. Some of the wiring behavior between neurons can be interpreted directly from their particular dendritic and axonal shapes. Here, I describe the dendritic density field (DDF) as one key element that remains to be better understood. I sketch an approach to relate DDFs in general to their underlying potential connectivity schemes. As an example, I show how the characteristic shape of a cortical pyramidal cell appears as a direct consequence of connecting inputs arranged in two separate parallel layers

    The laminar integration of sensory inputs with feedback signals in human cortex

    Get PDF
    The cortex constitutes the largest area of the human brain. Yet we have only a basic understanding of how the cortex performs one vital function: the integration of sensory signals (carried by feedforward pathways) with internal representations (carried by feedback pathways). A multi-scale, multi-species approach is essential for understanding the site of integration, computational mechanism and functional role of this processing. To improve our knowledge we must rely on brain imaging with improved spatial and temporal resolution and paradigms which can measure internal processes in the human brain, and on the bridging of disciplines in order to characterize this processing at cellular and circuit levels. We highlight apical amplification as one potential mechanism for integrating feedforward and feedback inputs within pyramidal neurons in the rodent brain. We reflect on the challenges and progress in applying this model neuronal process to the study of human cognition. We conclude that cortical-layer specific measures in humans will be an essential contribution for better understanding the landscape of information in cortical feedback, helping to bridge the explanatory gap

    Pre-integration lateral inhibition enhances unsupervised learning

    Get PDF
    A large and influential class of neural network architectures use post-integration lateral inhibition as a mechanism for competition. We argue that these algorithms are computationally deficient in that they fail to generate, or learn, appropriate perceptual representations under certain circumstances. An alternative neural network architecture is presented in which nodes compete for the right to receive inputs rather than for the right to generate outputs. This form of competition, implemented through pre-integration lateral inhibition, does provide appropriate coding properties and can be used to efficiently learn such representations. Furthermore, this architecture is consistent with both neuro-anatomical and neuro-physiological data. We thus argue that pre-integration lateral inhibition has computational advantages over conventional neural network architectures while remaining equally biologically plausible

    On Reverse Engineering in the Cognitive and Brain Sciences

    Get PDF
    Various research initiatives try to utilize the operational principles of organisms and brains to develop alternative, biologically inspired computing paradigms and artificial cognitive systems. This paper reviews key features of the standard method applied to complexity in the cognitive and brain sciences, i.e. decompositional analysis or reverse engineering. The indisputable complexity of brain and mind raise the issue of whether they can be understood by applying the standard method. Actually, recent findings in the experimental and theoretical fields, question central assumptions and hypotheses made for reverse engineering. Using the modeling relation as analyzed by Robert Rosen, the scientific analysis method itself is made a subject of discussion. It is concluded that the fundamental assumption of cognitive science, i.e. complex cognitive systems can be analyzed, understood and duplicated by reverse engineering, must be abandoned. Implications for investigations of organisms and behavior as well as for engineering artificial cognitive systems are discussed.Comment: 19 pages, 5 figure

    How feedback inhibition shapes spike-timing-dependent plasticity and its implications for recent Schizophrenia models

    Get PDF
    It has been shown that plasticity is not a fixed property but, in fact, changes depending on the location of the synapse on the neuron and/or changes of biophysical parameters. Here we investigate how plasticity is shaped by feedback inhibition in a cortical microcircuit. We use a differential Hebbian learning rule to model spike-timing dependent plasticity and show analytically that the feedback inhibition shortens the time window for LTD during spike-timing dependent plasticity but not for LTP. We then use a realistic GENESIS model to test two hypothesis about interneuron hypofunction and conclude that a reduction in GAD67 is the most likely candidate as the cause for hypofrontality as observed in Schizophrenia

    Diversity improves performance in excitable networks

    Full text link
    As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. Nonetheless, the behavior of the whole network can outperform all subgroups. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.Comment: 17 pages, 7 figure

    Local/global analysis of the stationary solutions of some neural field equations

    Full text link
    Neural or cortical fields are continuous assemblies of mesoscopic models, also called neural masses, of neural populations that are fundamental in the modeling of macroscopic parts of the brain. Neural fields are described by nonlinear integro-differential equations. The solutions of these equations represent the state of activity of these populations when submitted to inputs from neighbouring brain areas. Understanding the properties of these solutions is essential in advancing our understanding of the brain. In this paper we study the dependency of the stationary solutions of the neural fields equations with respect to the stiffness of the nonlinearity and the contrast of the external inputs. This is done by using degree theory and bifurcation theory in the context of functional, in particular infinite dimensional, spaces. The joint use of these two theories allows us to make new detailed predictions about the global and local behaviours of the solutions. We also provide a generic finite dimensional approximation of these equations which allows us to study in great details two models. The first model is a neural mass model of a cortical hypercolumn of orientation sensitive neurons, the ring model. The second model is a general neural field model where the spatial connectivity isdescribed by heterogeneous Gaussian-like functions.Comment: 38 pages, 9 figure
    corecore