10,211 research outputs found

    McLaren's Improved Snub Cube and Other New Spherical Designs in Three Dimensions

    Full text link
    Evidence is presented to suggest that, in three dimensions, spherical 6-designs with N points exist for N=24, 26, >= 28; 7-designs for N=24, 30, 32, 34, >= 36; 8-designs for N=36, 40, 42, >= 44; 9-designs for N=48, 50, 52, >= 54; 10-designs for N=60, 62, >= 64; 11-designs for N=70, 72, >= 74; and 12-designs for N=84, >= 86. The existence of some of these designs is established analytically, while others are given by very accurate numerical coordinates. The 24-point 7-design was first found by McLaren in 1963, and -- although not identified as such by McLaren -- consists of the vertices of an "improved" snub cube, obtained from Archimedes' regular snub cube (which is only a 3-design) by slightly shrinking each square face and expanding each triangular face. 5-designs with 23 and 25 points are presented which, taken together with earlier work of Reznick, show that 5-designs exist for N=12, 16, 18, 20, >= 22. It is conjectured, albeit with decreasing confidence for t >= 9, that these lists of t-designs are complete and that no others exist. One of the constructions gives a sequence of putative spherical t-designs with N= 12m points (m >= 2) where N = t^2/2 (1+o(1)) as t -> infinity.Comment: 16 pages, 1 figur

    Construction of spherical cubature formulas using lattices

    Full text link
    We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidian lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on the sphere of dimension n-1 for n=4, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming

    Unitary designs and codes

    Full text link
    A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code - a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct values - and give an upper bound for the size of a code of degree s in U(d) for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.Comment: 25 pages, no figure

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor
    • …
    corecore