304 research outputs found

    Constructions of Snake-in-the-Box Codes for Rank Modulation

    Full text link
    Snake-in-the-box code is a Gray code which is capable of detecting a single error. Gray codes are important in the context of the rank modulation scheme which was suggested recently for representing information in flash memories. For a Gray code in this scheme the codewords are permutations, two consecutive codewords are obtained by using the "push-to-the-top" operation, and the distance measure is defined on permutations. In this paper the Kendall's τ\tau-metric is used as the distance measure. We present a general method for constructing such Gray codes. We apply the method recursively to obtain a snake of length M2n+1=((2n+1)(2n)1)M2n1M_{2n+1}=((2n+1)(2n)-1)M_{2n-1} for permutations of S2n+1S_{2n+1}, from a snake of length M2n1M_{2n-1} for permutations of~S2n1S_{2n-1}. Thus, we have limnM2n+1S2n+10.4338\lim\limits_{n\to \infty} \frac{M_{2n+1}}{S_{2n+1}}\approx 0.4338, improving on the previous known ratio of limn1πn\lim\limits_{n\to \infty} \frac{1}{\sqrt{\pi n}}. By using the general method we also present a direct construction. This direct construction is based on necklaces and it might yield snakes of length (2n+1)!22n+1\frac{(2n+1)!}{2} -2n+1 for permutations of S2n+1S_{2n+1}. The direct construction was applied successfully for S7S_7 and S9S_9, and hence limnM2n+1S2n+10.4743\lim\limits_{n\to \infty} \frac{M_{2n+1}}{S_{2n+1}}\approx 0.4743.Comment: IEEE Transactions on Information Theor

    Sparse Kneser graphs are Hamiltonian

    Get PDF
    For integers k1k\geq 1 and n2k+1n\geq 2k+1, the Kneser graph K(n,k)K(n,k) is the graph whose vertices are the kk-element subsets of {1,,n}\{1,\ldots,n\} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k+1,k)K(2k+1,k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k3k\geq 3, the odd graph K(2k+1,k)K(2k+1,k) has a Hamilton cycle. This and a known conditional result due to Johnson imply that all Kneser graphs of the form K(2k+2a,k)K(2k+2^a,k) with k3k\geq 3 and a0a\geq 0 have a Hamilton cycle. We also prove that K(2k+1,k)K(2k+1,k) has at least 22k62^{2^{k-6}} distinct Hamilton cycles for k6k\geq 6. Our proofs are based on a reduction of the Hamiltonicity problem in the odd graph to the problem of finding a spanning tree in a suitably defined hypergraph on Dyck words
    corecore