280 research outputs found

    New Sets of Optimal Odd-length Binary Z-Complementary Pairs

    Get PDF
    A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation sums (AACSs) for time-shifts within a certain region, called zero correlation zone (ZCZ). Optimal odd-length binary ZCPs (OB-ZCPs) display closest correlation properties to Golay complementary pairs (GCPs) in that each OB-ZCP achieves maximum ZCZ of width (N+1)/2 (where N is the sequence length) and every out-of-zone AACSs reaches the minimum magnitude value, i.e. 2. Till date, systematic constructions of optimal OB-ZCPs exist only for lengths 2α±12^{\alpha} \pm 1, where α\alpha is a positive integer. In this paper, we construct optimal OB-ZCPs of generic lengths 2α10β26γ+12^\alpha 10^\beta 26^\gamma +1 (where α, β, γ\alpha,~ \beta, ~ \gamma are non-negative integers and α≥1\alpha \geq 1) from inserted versions of binary GCPs. The key leading to the proposed constructions is several newly identified structure properties of binary GCPs obtained from Turyn's method. This key also allows us to construct OB-ZCPs with possible ZCZ widths of 4×10β−1+14 \times 10^{\beta-1} +1, 12×26γ−1+112 \times 26^{\gamma -1}+1 and 12×10β26γ−1+112 \times 10^\beta 26^{\gamma -1}+1 through proper insertions of GCPs of lengths 10β, 26γ,and 10β26γ10^\beta,~ 26^\gamma, \text{and } 10^\beta 26^\gamma, respectively. Our proposed OB-ZCPs have applications in communications and radar (as an alternative to GCPs)

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    A Systematic Framework for the Construction of Optimal Complete Complementary Codes

    Full text link
    The complete complementary code (CCC) is a sequence family with ideal correlation sums which was proposed by Suehiro and Hatori. Numerous literatures show its applications to direct-spread code-division multiple access (DS-CDMA) systems for inter-channel interference (ICI)-free communication with improved spectral efficiency. In this paper, we propose a systematic framework for the construction of CCCs based on NN-shift cross-orthogonal sequence families (NN-CO-SFs). We show theoretical bounds on the size of NN-CO-SFs and CCCs, and give a set of four algorithms for their generation and extension. The algorithms are optimal in the sense that the size of resulted sequence families achieves theoretical bounds and, with the algorithms, we can construct an optimal CCC consisting of sequences whose lengths are not only almost arbitrary but even variable between sequence families. We also discuss the family size, alphabet size, and lengths of constructible CCCs based on the proposed algorithms

    Sparse Complementary Pairs with Additional Aperiodic ZCZ Property

    Full text link
    This paper presents a novel class of complex-valued sparse complementary pairs (SCPs), each consisting of a number of zero values and with additional zero-correlation zone (ZCZ) property for the aperiodic autocorrelations and crosscorrelations of the two constituent sequences. Direct constructions of SCPs and their mutually-orthogonal mates based on restricted generalized Boolean functions are proposed. It is shown that such SCPs exist with arbitrary lengths and controllable sparsity levels, making them a disruptive sequence candidate for modern low-complexity, low-latency, and low-storage signal processing applications

    Direct Construction of Optimal Z-Complementary Code Sets for all Possible Even Length by Using Pseudo-Boolean Functions

    Get PDF
    Z-complementary code set (ZCCS) are well known to be used in multicarrier code-division multiple access (MCCDMA) system to provide a interference free environment. Based on the existing literature, the direct construction of optimal ZCCSs are limited to its length. In this paper, we are interested in constructing optimal ZCCSs of all possible even lengths using Pseudo-Boolean functions. The maximum column sequence peakto-man envelop power ratio (PMEPR) of the proposed ZCCSs is upper-bounded by two, which may give an extra benefit in managing PMEPR in an ZCCS based MC-CDMA system, as well as the ability to handle a large number of users

    A direct construction of even length ZCPs with large ZCZ ratio

    Get PDF
    This paper presents a direct construction of aperiodic q-ary (q is a positive even integer) even length Z-complementary pairs (ZCPs) with large zero-correlation zone (ZCZ) width using generalised Boolean functions (GBFs). The applicability of ZCPs increases with the increasing value of ZCZ width, which plays a significant role in reducing interference in a communication system with asynchronous surroundings. For q = 2, the proposed ZCPs reduce to even length binary ZCPs (EB-ZCPs). However, to the best of the authors’ knowledge, the highest ZCZ ratio for even length ZCPs which are directly constructed to date using GBFs is 3/4. In the proposed construction, we provide even length ZCPs with ZCZ ratios 5/6 and 6/7, which are the largest ZCZ ratios achieved to date through direct construction.acceptedVersio
    • …
    corecore