184 research outputs found

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    Randomness Efficient Noise Stability and Generalized Small Bias Sets

    Get PDF

    Better lossless condensers through derandomized curve samplers

    Get PDF
    Lossless condensers are unbalanced expander graphs, with expansion close to optimal. Equivalently, they may be viewed as functions that use a short random seed to map a source on n bits to a source on many fewer bits while preserving all of the min-entropy. It is known how to build lossless condensers when the graphs are slightly unbalanced in the work of M. Capalbo et al. (2002). The highly unbalanced case is also important but the only known construction does not condense the source well. We give explicit constructions of lossless condensers with condensing close to optimal, and using near-optimal seed length. Our main technical contribution is a randomness-efficient method for sampling FD (where F is a field) with low-degree curves. This problem was addressed before in the works of E. Ben-Sasson et al. (2003) and D. Moshkovitz and R. Raz (2006) but the solutions apply only to degree one curves, i.e., lines. Our technique is new and elegant. We use sub-sampling and obtain our curve samplers by composing a sequence of low-degree manifolds, starting with high-dimension, low-degree manifolds and proceeding through lower and lower dimension manifolds with (moderately) growing degrees, until we finish with dimension-one, low-degree manifolds, i.e., curves. The technique may be of independent interest

    Bounded Independence Plus Noise Fools Products

    Get PDF
    Let D be a b-wise independent distribution over {0,1}^m. Let E be the "noise" distribution over {0,1}^m where the bits are independent and each bit is 1 with probability eta/2. We study which tests f: {0,1}^m -> [-1,1] are epsilon-fooled by D+E, i.e., |E[f(D+E)] - E[f(U)]| <= epsilon where U is the uniform distribution. We show that D+E epsilon-fools product tests f: ({0,1}^n)^k -> [-1,1] given by the product of k bounded functions on disjoint n-bit inputs with error epsilon = k(1-eta)^{Omega(b^2/m)}, where m = nk and b >= n. This bound is tight when b = Omega(m) and eta >= (log k)/m. For b >= m^{2/3} log m and any constant eta the distribution D+E also 0.1-fools log-space algorithms. We develop two applications of this type of results. First, we prove communication lower bounds for decoding noisy codewords of length m split among k parties. For Reed-Solomon codes of dimension m/k where k = O(1), communication Omega(eta m) - O(log m) is required to decode one message symbol from a codeword with eta m errors, and communication O(eta m log m) suffices. Second, we obtain pseudorandom generators. We can epsilon-fool product tests f: ({0,1}^n)^k -> [-1,1] under any permutation of the bits with seed lengths 2n + O~(k^2 log(1/epsilon)) and O(n) + O~(sqrt{nk log 1/epsilon}). Previous generators have seed lengths >= nk/2 or >= n sqrt{n k}. For the special case where the k bounded functions have range {0,1} the previous generators have seed length >= (n+log k)log(1/epsilon)

    Near-Optimal Cayley Expanders for Abelian Groups

    Get PDF
    We give an efficient deterministic algorithm that outputs an expanding generating set for any finite abelian group. The size of the generating set is close to the randomized construction of Alon and Roichman [Alon and Roichman, 1994], improving upon various deterministic constructions in both the dependence on the dimension and the spectral gap. By obtaining optimal dependence on the dimension we resolve a conjecture of Azar, Motwani, and Naor [Azar et al., 1998] in the affirmative. Our technique is an extension of the bias amplification technique of Ta-Shma [Ta-Shma, 2017], who used random walks on expanders to obtain expanding generating sets over the additive group of ???. As a consequence, we obtain (i) randomness-efficient constructions of almost k-wise independent variables, (ii) a faster deterministic algorithm for the Remote Point Problem, (iii) randomness-efficient low-degree tests, and (iv) randomness-efficient verification of matrix multiplication

    Range Avoidance for Low-Depth Circuits and Connections to Pseudorandomness

    Get PDF
    In the range avoidance problem, the input is a multi-output Boolean circuit with more outputs than inputs, and the goal is to find a string outside its range (which is guaranteed to exist). We show that well-known explicit construction questions such as finding binary linear codes achieving the Gilbert-Varshamov bound or list-decoding capacity, and constructing rigid matrices, reduce to the range avoidance problem of log-depth circuits, and by a further recent reduction [Ren, Santhanam, and Wang, FOCS 2022] to NC?? circuits where each output depends on at most 4 input bits. On the algorithmic side, we show that range avoidance for NC?? circuits can be solved in polynomial time. We identify a general condition relating to correlation with low-degree parities that implies that any almost pairwise independent set has some string that avoids the range of every circuit in the class. We apply this to NC? circuits, and to small width CNF/DNF and general De Morgan formulae (via a connection to approximate-degree), yielding non-trivial small hitting sets for range avoidance in these cases

    Quantified Derandomization of Linear Threshold Circuits

    Full text link
    One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0TC^0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0TC^0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0TC^0 circuits of depth d>2d>2. Our first main result is a quantified derandomization algorithm for TC0TC^0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0TC^0 circuit CC over nn input bits with depth dd and n1+exp(d)n^{1+\exp(-d)} wires, runs in almost-polynomial-time, and distinguishes between the case that CC rejects at most 2n11/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n11/5d2^{n^{1-1/5d}} inputs. In fact, our algorithm works even when the circuit CC is a linear threshold circuit, rather than just a TC0TC^0 circuit (i.e., CC is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0TC^0, and would consequently imply that NEXP⊈TC0NEXP\not\subseteq TC^0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0TC^0 circuit with depth dd and n1+O(1/d)n^{1+O(1/d)} wires (rather than n1+exp(d)n^{1+\exp(-d)} wires), runs in time at most 2nexp(d)2^{n^{\exp(-d)}}, and distinguishes between the case that CC rejects at most 2n11/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n11/5d2^{n^{1-1/5d}} inputs, then there exists an algorithm with running time 2n1Ω(1)2^{n^{1-\Omega(1)}} for standard derandomization of TC0TC^0.Comment: Changes in this revision: An additional result (a PRG for quantified derandomization of depth-2 LTF circuits); rewrite of some of the exposition; minor correction

    Pseudorandom Generators for Width-3 Branching Programs

    Full text link
    We construct pseudorandom generators of seed length O~(log(n)log(1/ϵ))\tilde{O}(\log(n)\cdot \log(1/\epsilon)) that ϵ\epsilon-fool ordered read-once branching programs (ROBPs) of width 33 and length nn. For unordered ROBPs, we construct pseudorandom generators with seed length O~(log(n)poly(1/ϵ))\tilde{O}(\log(n) \cdot \mathrm{poly}(1/\epsilon)). This is the first improvement for pseudorandom generators fooling width 33 ROBPs since the work of Nisan [Combinatorica, 1992]. Our constructions are based on the `iterated milder restrictions' approach of Gopalan et al. [FOCS, 2012] (which further extends the Ajtai-Wigderson framework [FOCS, 1985]), combined with the INW-generator [STOC, 1994] at the last step (as analyzed by Braverman et al. [SICOMP, 2014]). For the unordered case, we combine iterated milder restrictions with the generator of Chattopadhyay et al. [CCC, 2018]. Two conceptual ideas that play an important role in our analysis are: (1) A relabeling technique allowing us to analyze a relabeled version of the given branching program, which turns out to be much easier. (2) Treating the number of colliding layers in a branching program as a progress measure and showing that it reduces significantly under pseudorandom restrictions. In addition, we achieve nearly optimal seed-length O~(log(n/ϵ))\tilde{O}(\log(n/\epsilon)) for the classes of: (1) read-once polynomials on nn variables, (2) locally-monotone ROBPs of length nn and width 33 (generalizing read-once CNFs and DNFs), and (3) constant-width ROBPs of length nn having a layer of width 22 in every consecutive polylog(n)\mathrm{poly}\log(n) layers.Comment: 51 page

    Small Bias Requires Large Formulas

    Get PDF
    A small-biased function is a randomized function whose distribution of truth-tables is small-biased. We demonstrate that known explicit lower bounds on (1) the size of general Boolean formulas, (2) the size of De Morgan formulas, and (3) correlation against small De Morgan formulas apply to small-biased functions. As a consequence, any strongly explicit small-biased generator is subject to the best-known explicit formula lower bounds in all these models. On the other hand, we give a construction of a small-biased function that is tight with respect to lower bound (1) for the relevant range of parameters. We interpret this construction as a natural-type barrier against substantially stronger lower bounds for general formulas

    Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded Channels

    Get PDF
    A stochastic code is a pair of encoding and decoding procedures where Encoding procedure receives a k bit message m, and a d bit uniform string S. The code is (p,L)-list-decodable against a class C of "channel functions" from n bits to n bits, if for every message m and every channel C in C that induces at most pnpn errors, applying decoding on the "received word" C(Enc(m,S)) produces a list of at most L messages that contain m with high probability (over the choice of uniform S). Note that both the channel C and the decoding algorithm Dec do not receive the random variable S. The rate of a code is the ratio between the message length and the encoding length, and a code is explicit if Enc, Dec run in time poly(n). Guruswami and Smith (J. ACM, to appear), showed that for every constants 0 1 there are Monte-Carlo explicit constructions of stochastic codes with rate R >= 1-H(p)-epsilon that are (p,L=poly(1/epsilon))-list decodable for size n^c channels. Monte-Carlo, means that the encoding and decoding need to share a public uniformly chosen poly(n^c) bit string Y, and the constructed stochastic code is (p,L)-list decodable with high probability over the choice of Y. Guruswami and Smith pose an open problem to give fully explicit (that is not Monte-Carlo) explicit codes with the same parameters, under hardness assumptions. In this paper we resolve this open problem, using a minimal assumption: the existence of poly-time computable pseudorandom generators for small circuits, which follows from standard complexity assumptions by Impagliazzo and Wigderson (STOC 97). Guruswami and Smith also asked to give a fully explicit unconditional constructions with the same parameters against O(log n)-space online channels. (These are channels that have space O(log n) and are allowed to read the input codeword in one pass). We resolve this open problem. Finally, we consider a tighter notion of explicitness, in which the running time of encoding and list-decoding algorithms does not increase, when increasing the complexity of the channel. We give explicit constructions (with rate approaching 1-H(p) for every p 0) for channels that are circuits of size 2^{n^{Omega(1/d)}} and depth d. Here, the running time of encoding and decoding is a fixed polynomial (that does not depend on d). Our approach builds on the machinery developed by Guruswami and Smith, replacing some probabilistic arguments with explicit constructions. We also present a simplified and general approach that makes the reductions in the proof more efficient, so that we can handle weak classes of channels
    corecore