584 research outputs found

    Fast-Decodable Asymmetric Space-Time Codes from Division Algebras

    Full text link
    Multiple-input double-output (MIDO) codes are important in the near-future wireless communications, where the portable end-user device is physically small and will typically contain at most two receive antennas. Especially tempting is the 4 x 2 channel due to its immediate applicability in the digital video broadcasting (DVB). Such channels optimally employ rate-two space-time (ST) codes consisting of (4 x 4) matrices. Unfortunately, such codes are in general very complex to decode, hence setting forth a call for constructions with reduced complexity. Recently, some reduced complexity constructions have been proposed, but they have mainly been based on different ad hoc methods and have resulted in isolated examples rather than in a more general class of codes. In this paper, it will be shown that a family of division algebra based MIDO codes will always result in at least 37.5% worst-case complexity reduction, while maintaining full diversity and, for the first time, the non-vanishing determinant (NVD) property. The reduction follows from the fact that, similarly to the Alamouti code, the codes will be subsets of matrix rings of the Hamiltonian quaternions, hence allowing simplified decoding. At the moment, such reductions are among the best known for rate-two MIDO codes. Several explicit constructions are presented and shown to have excellent performance through computer simulations.Comment: 26 pages, 1 figure, submitted to IEEE Trans. Inf. Theory, October 201

    Construction of Block Orthogonal STBCs and Reducing Their Sphere Decoding Complexity

    Full text link
    Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.Comment: 16 pages, 7 figures; Minor changes in lemmas and construction

    Outlaw distributions and locally decodable codes

    Get PDF
    Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in~L∞L_\infty~norm) with a small number of samples. We coin the term `outlaw distributions' for such distributions since they `defy' the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently `smooth' functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and from hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters.Comment: A preliminary version of this paper appeared in the proceedings of ITCS 201

    Generalized Silver Codes

    Full text link
    For an ntn_t transmit, nrn_r receive antenna system (nt×nrn_t \times n_r system), a {\it{full-rate}} space time block code (STBC) transmits nmin=min(nt,nr)n_{min} = min(n_t,n_r) complex symbols per channel use. The well known Golden code is an example of a full-rate, full-diversity STBC for 2 transmit antennas. Its ML-decoding complexity is of the order of M2.5M^{2.5} for square MM-QAM. The Silver code for 2 transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M2M^2. Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nr≥ntn_r \geq n_t) but have a high ML-decoding complexity of the order of MntnminM^{n_tn_{min}} (for nr<ntn_r < n_t, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a2^a transmit antennas and any nrn_r with reduced ML-decoding complexity of the order of Mnt(nmin−(3/4))−0.5M^{n_t(n_{min}-(3/4))-0.5}, is presented. The codes constructed are also information lossless for nr≥ntn_r \geq n_t, like the Perfect codes and allow higher mutual information than the comparable punctured Perfect codes for nr<ntn_r < n_t. These codes are referred to as the {\it generalized Silver codes}, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver-Golden codes for 2 transmit antennas. Simulation results of the symbol error rates for 4 and 8 transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.Comment: Accepted for publication in the IEEE Transactions on Information Theory. This revised version has 30 pages, 7 figures and Section III has been completely revise
    • …
    corecore