4,327 research outputs found

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Disjoint difference families and their applications

    Get PDF
    Difference sets and their generalisations to difference families arise from the study of designs and many other applications. Here we give a brief survey of some of these applications, noting in particular the diverse definitions of difference families and the variations in priorities in constructions. We propose a definition of disjoint difference families that encompasses these variations and allows a comparison of the similarities and disparities. We then focus on two constructions of disjoint difference families arising from frequency hopping sequences and showed that they are in fact the same. We conclude with a discussion of the notion of equivalence for frequency hopping sequences and for disjoint difference families

    Coloring triangle-free rectangle overlap graphs with O(loglogn)O(\log\log n) colors

    Get PDF
    Recently, it was proved that triangle-free intersection graphs of nn line segments in the plane can have chromatic number as large as Θ(loglogn)\Theta(\log\log n). Essentially the same construction produces Θ(loglogn)\Theta(\log\log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes---those belonging to any class of compact arc-connected sets in R2\mathbb{R}^2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(loglogn)O(\log\log n), improving on the previous bound of O(logn)O(\log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(loglogn)O(\log\log n) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).Comment: Minor revisio

    Hadamard partitioned difference families and their descendants

    Get PDF
    If DD is a (4u2,2u2u,u2u)(4u^2,2u^2-u,u^2-u) Hadamard difference set (HDS) in GG, then {G,GD}\{G,G\setminus D\} is clearly a (4u2,[2u2u,2u2+u],2u2)(4u^2,[2u^2-u,2u^2+u],2u^2) partitioned difference family (PDF). Any (v,K,λ)(v,K,\lambda)-PDF will be said of Hadamard-type if v=2λv=2\lambda as the one above. We present a doubling construction which, starting from any such PDF, leads to an infinite class of PDFs. As a special consequence, we get a PDF in a group of order 4u2(2n+1)4u^2(2n+1) and three block-sizes 4u22u4u^2-2u, 4u24u^2 and 4u2+2u4u^2+2u, whenever we have a (4u2,2u2u,u2u)(4u^2,2u^2-u,u^2-u)-HDS and the maximal prime power divisors of 2n+12n+1 are all greater than 4u2+2u4u^2+2u

    Circular external difference families, graceful labellings and cyclotomy

    Full text link
    (Strong) circular external difference families (which we denote as CEDFs and SCEDFs) can be used to construct nonmalleable threshold schemes. They are a variation of (strong) external difference families, which have been extensively studied in recent years. We provide a variety of constructions for CEDFs based on graceful labellings (α\alpha-valuations) of lexicographic products CnKcC_n \boldsymbol{\cdot} K_{\ell}^c, where CnC_n denotes a cycle of length nn. SCEDFs having more than two subsets do not exist. However, we can construct close approximations (more specifically, certain types of circular algebraic manipulation detection (AMD) codes) using the theory of cyclotomic numbers in finite fields

    Near-complete external difference families

    Get PDF
    We introduce and explore near-complete external difference families, a partitioning of the nonidentity elements of a group so that each nonidentity element is expressible as a difference of elements from distinct subsets a fixed number of times. We show that the existence of such an object implies the existence of a near-resolvable design. We provide examples and general constructions of these objects, some of which lead to new parameter families of near-resolvable designs on a non-prime-power number of points. Our constructions employ cyclotomy, partial difference sets, and Galois rings.PostprintPeer reviewe
    corecore