8,833 research outputs found

    Covering of Subspaces by Subspaces

    Full text link
    Lower and upper bounds on the size of a covering of subspaces in the Grassmann graph \cG_q(n,r) by subspaces from the Grassmann graph \cG_q(n,k), krk \geq r, are discussed. The problem is of interest from four points of view: coding theory, combinatorial designs, qq-analogs, and projective geometry. In particular we examine coverings based on lifted maximum rank distance codes, combined with spreads and a recursive construction. New constructions are given for q=2q=2 with r=2r=2 or r=3r=3. We discuss the density for some of these coverings. Tables for the best known coverings, for q=2q=2 and 5n105 \leq n \leq 10, are presented. We present some questions concerning possible constructions of new coverings of smaller size.Comment: arXiv admin note: text overlap with arXiv:0805.352

    Constructions of biangular tight frames and their relationships with equiangular tight frames

    Full text link
    We study several interesting examples of Biangular Tight Frames (BTFs) - basis-like sets of unit vectors admitting exactly two distinct frame angles (ie, pairwise absolute inner products) - and examine their relationships with Equiangular Tight Frames (ETFs) - basis-like systems which admit exactly one frame angle. We demonstrate a smooth parametrization BTFs, where the corresponding frame angles transform smoothly with the parameter, which "passes through" an ETF answers two questions regarding the rigidity of BTFs. We also develop a general framework of so-called harmonic BTFs and Steiner BTFs - which includes the equiangular cases, surprisingly, the development of this framework leads to a connection with the famous open problem(s) regarding the existence of Mersenne and Fermat primes. Finally, we construct a (chordally) biangular tight set of subspaces (ie, a tight fusion frame) which "Pl\"ucker embeds" into an ETF.Comment: 19 page

    Resolving sets for Johnson and Kneser graphs

    Get PDF
    A set of vertices SS in a graph GG is a {\em resolving set} for GG if, for any two vertices u,vu,v, there exists xSx\in S such that the distances d(u,x)d(v,x)d(u,x) \neq d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.Comment: 23 pages, 2 figures, 1 tabl

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Universal Entanglers for Bosonic and Fermionic Systems

    Get PDF
    A universal entangler (UE) is a unitary operation which maps all pure product states to entangled states. It is known that for a bipartite system of particles 1,21,2 with a Hilbert space Cd1Cd2\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}, a UE exists when min(d1,d2)3\min{(d_1,d_2)}\geq 3 and (d1,d2)(3,3)(d_1,d_2)\neq (3,3). It is also known that whenever a UE exists, almost all unitaries are UEs; however to verify whether a given unitary is a UE is very difficult since solving a quadratic system of equations is NP-hard in general. This work examines the existence and construction of UEs of bipartite bosonic/fermionic systems whose wave functions sit in the symmetric/antisymmetric subspace of CdCd\mathbb{C}^{d}\otimes\mathbb{C}^{d}. The development of a theory of UEs for these types of systems needs considerably different approaches from that used for UEs of distinguishable systems. This is because the general entanglement of identical particle systems cannot be discussed in the usual way due to the effect of (anti)-symmetrization which introduces "pseudo entanglement" that is inaccessible in practice. We show that, unlike the distinguishable particle case, UEs exist for bosonic/fermionic systems with Hilbert spaces which are symmetric (resp. antisymmetric) subspaces of CdCd\mathbb{C}^{d}\otimes\mathbb{C}^{d} if and only if d3d\geq 3 (resp. d8d\geq 8). To prove this we employ algebraic geometry to reason about the different algebraic structures of the bosonic/fermionic systems. Additionally, due to the relatively simple coherent state form of unentangled bosonic states, we are able to give the explicit constructions of two bosonic UEs. Our investigation provides insight into the entanglement properties of systems of indisitinguishable particles, and in particular underscores the difference between the entanglement structures of bosonic, fermionic and distinguishable particle systems.Comment: 15 pages, comments welcome, TQC2013 Accepted Tal

    On the number of k-dominating independent sets

    Get PDF
    We study the existence and the number of kk-dominating independent sets in certain graph families. While the case k=1k=1 namely the case of maximal independent sets - which is originated from Erd\H{o}s and Moser - is widely investigated, much less is known in general. In this paper we settle the question for trees and prove that the maximum number of kk-dominating independent sets in nn-vertex graphs is between ck22knc_k\cdot\sqrt[2k]{2}^n and ck2k+1nc_k'\cdot\sqrt[k+1]{2}^n if k2k\geq 2, moreover the maximum number of 22-dominating independent sets in nn-vertex graphs is between c1.22nc\cdot 1.22^n and c1.246nc'\cdot1.246^n. Graph constructions containing a large number of kk-dominating independent sets are coming from product graphs, complete bipartite graphs and with finite geometries. The product graph construction is associated with the number of certain MDS codes.Comment: 13 page
    corecore