244 research outputs found

    Constructions for projectively unique polytopes

    Get PDF
    AbstractA convex polytope P is projectively unique if every polytope combinatorially isomorphic to P is projectively equivalent to P. In this paper are described certain geometric constructions, which are also discussed in terms of Gale diagrams. These constructions are applied to obtain projectively unique polytopes from ones of lower dimension; in particular, they lead to projectively unique polytopes with many vertices

    Many projectively unique polytopes

    Full text link
    We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to 96. This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its f-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in S^d, a new Alexandrov--van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence's extension technique for point configurations.Comment: 44 pages, 18 figures; to appear in Invent. mat

    Antiprismless, or: Reducing Combinatorial Equivalence to Projective Equivalence in Realizability Problems for Polytopes

    Full text link
    This article exhibits a 4-dimensional combinatorial polytope that has no antiprism, answering a question posed by Bernt Lindst\"om. As a consequence, any realization of this combinatorial polytope has a face that it cannot rest upon without toppling over. To this end, we provide a general method for solving a broad class of realizability problems. Specifically, we show that for any semialgebraic property that faces inherit, the given property holds for some realization of every combinatorial polytope if and only if the property holds from some projective copy of every polytope. The proof uses the following result by Below. Given any polytope with vertices having algebraic coordinates, there is a combinatorial "stamp" polytope with a specified face that is projectively equivalent to the given polytope in all realizations. Here we construct a new stamp polytope that is closely related to Richter-Gebert's proof of universality for 4-dimensional polytopes, and we generalize several tools from that proof

    A Quantitative Steinitz Theorem for Plane Triangulations

    Full text link
    We give a new proof of Steinitz's classical theorem in the case of plane triangulations, which allows us to obtain a new general bound on the grid size of the simplicial polytope realizing a given triangulation, subexponential in a number of special cases. Formally, we prove that every plane triangulation GG with nn vertices can be embedded in R2\mathbb{R}^2 in such a way that it is the vertical projection of a convex polyhedral surface. We show that the vertices of this surface may be placed in a 4n3×8n5×ζ(n)4n^3 \times 8n^5 \times \zeta(n) integer grid, where ζ(n)≤(500n8)τ(G)\zeta(n) \leq (500 n^8)^{\tau(G)} and τ(G)\tau(G) denotes the shedding diameter of GG, a quantity defined in the paper.Comment: 25 pages, 6 postscript figure
    • …
    corecore