18,824 research outputs found

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Optimal Partitioned Cyclic Difference Packings for Frequency Hopping and Code Synchronization

    Full text link
    Optimal partitioned cyclic difference packings (PCDPs) are shown to give rise to optimal frequency-hopping sequences and optimal comma-free codes. New constructions for PCDPs, based on almost difference sets and cyclic difference matrices, are given. These produce new infinite families of optimal PCDPs (and hence optimal frequency-hopping sequences and optimal comma-free codes). The existence problem for optimal PCDPs in Z3m{\mathbb Z}_{3m}, with mm base blocks of size three, is also solved for all m≢8,16(mod24)m\not\equiv 8,16\pmod{24}.Comment: to appear in IEEE Transactions on Information Theor

    Identification via Quantum Channels in the Presence of Prior Correlation and Feedback

    Full text link
    Continuing our earlier work (quant-ph/0401060), we give two alternative proofs of the result that a noiseless qubit channel has identification capacity 2: the first is direct by a "maximal code with random extension" argument, the second is by showing that 1 bit of entanglement (which can be generated by transmitting 1 qubit) and negligible (quantum) communication has identification capacity 2. This generalises a random hashing construction of Ahlswede and Dueck: that 1 shared random bit together with negligible communication has identification capacity 1. We then apply these results to prove capacity formulas for various quantum feedback channels: passive classical feedback for quantum-classical channels, a feedback model for classical-quantum channels, and "coherent feedback" for general channels.Comment: 19 pages. Requires Rinton-P9x6.cls. v2 has some minor errors/typoes corrected and the claims of remark 22 toned down (proofs are not so easy after all). v3 has references to simultaneous ID coding removed: there were necessary changes in quant-ph/0401060. v4 (final form) has minor correction

    Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels

    Get PDF
    A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity I(W)I(W) of any given binary-input discrete memoryless channel (B-DMC) WW. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of NN independent copies of a given B-DMC WW, a second set of NN binary-input channels {WN(i):1iN}\{W_N^{(i)}:1\le i\le N\} such that, as NN becomes large, the fraction of indices ii for which I(WN(i))I(W_N^{(i)}) is near 1 approaches I(W)I(W) and the fraction for which I(WN(i))I(W_N^{(i)}) is near 0 approaches 1I(W)1-I(W). The polarized channels {WN(i)}\{W_N^{(i)}\} are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC WW with I(W)>0I(W)>0 and any target rate R<I(W)R < I(W), there exists a sequence of polar codes {Cn;n1}\{{\mathscr C}_n;n\ge 1\} such that Cn{\mathscr C}_n has block-length N=2nN=2^n, rate R\ge R, and probability of block error under successive cancellation decoding bounded as P_{e}(N,R) \le \bigoh(N^{-\frac14}) independently of the code rate. This performance is achievable by encoders and decoders with complexity O(NlogN)O(N\log N) for each.Comment: The version which appears in the IEEE Transactions on Information Theory, July 200

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF
    corecore