15,260 research outputs found

    A protein network refinement method based on module discovery and biological information

    Full text link
    The identification of essential proteins can help in understanding the minimum requirements for cell survival and development. Network-based centrality approaches are commonly used to identify essential proteins from protein-protein interaction networks (PINs). Unfortunately, these approaches are limited by the poor quality of the underlying PIN data. To overcome this problem, researchers have focused on the prediction of essential proteins by combining PINs with other biological data. In this paper, we proposed a network refinement method based on module discovery and biological information to obtain a higher quality PIN. First, to extract the maximal connected subgraph in the PIN and to divide it into different modules by using Fast-unfolding algorithm; then, to detect critical modules based on the homology information, subcellular localization information and topology information within each module, and to construct a more refined network (CM-PIN). To evaluate the effectiveness of the proposed method, we used 10 typical network-based centrality methods (LAC, DC, DMNC, NC, TP, LID, CC, BC, PR, LR) to compare the overall performance of the CM-PIN with those the refined dynamic protein network (RD-PIN). The experimental results showed that the CM-PIN was optimal in terms of precision-recall curve, jackknife curve and other criteria, and can help to identify essential proteins more accurately

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    Molecular Mechanisms of Secreting Vesicle Biogenesis and Secretion in Chronic Degenerative Diseases

    Get PDF
    Regulated trafficking and secretion of insulin by the β cell of the endocrine pancreas is critical to maintain our body energy homeostasis. Disruption of these processes typically leads to hyperglycemia and the complications of diabetes. Compared to methods using anti-insulin or C-peptide antibodies, the fluorescent protein labeling approaches provide many advantages in live-cell, real time format with dynamic spatial and temporal monitoring. Previous studies from our lab demonstrated that by fusing a GFP within the C peptide of mouse proinsulin (Ins-C-GFP) insulin secretory granule targeting, trafficking and exocytosis could be monitored in live cells. Confocal microscopy and western blot results showed over 85% of the Ins-C-GFP can be targeted to insulin granules, with highly efficient proteolytic processing to mature insulin and C-GFP. Our present project aims to establish the minimum molecular determinants within human proinsulin required for its targeting to secretory granules. In order to do this, we designed a viral shuttle plasmid containing only the signal peptide, the first 5 residues of the B chain, followed by a monomeric GFP(B5), chemically synthesized with restriction sites for highly efficient and systematic chimeric and point mutagenesis. Confocal microscopy and 3-D reconstruction experiments revealed that the B5 vector was successfully expressed and nearly all of the fluorescent protein appeared within the ER(5 transfections; 72 cells), whereas the full-length hIns-C-emGFP vector efficiently targets insulin secretory granules. The results make it unlikely that the first five residues of the B chain are sufficient for human proinsulin targeting to secretory granules. The results also suggest that the middle of the C peptide is not necessary for human proinsulin targeting. We are presently characterizing a construct with the signal peptide alone without any insulin B chain residues (B0). By systematically adding back segments from hIns-C-emGFP to B5 or B0 and the following systematic point mutagenesis, we aim to establish the minimal segments and the precise residue(s) or motif(s) of human proinsulin required for targeting to secretory granules

    Beyond element-wise interactions: identifying complex interactions in biological processes

    Get PDF
    Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations. Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction. Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem

    Signalling ballet in space and time.

    Get PDF
    Although we have amassed extensive catalogues of signalling network components, our understanding of the spatiotemporal control of emergent network structures has lagged behind. Dynamic behaviour is starting to be explored throughout the genome, but analysis of spatial behaviours is still confined to individual proteins. The challenge is to reveal how cells integrate temporal and spatial information to determine specific biological functions. Key findings are the discovery of molecular signalling machines such as Ras nanoclusters, spatial activity gradients and flexible network circuitries that involve transcriptional feedback. They reveal design principles of spatiotemporal organization that are crucial for network function and cell fate decisions

    A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks

    Get PDF
    Background Transcription regulatory networks are composed of interactions between transcription factors and their target genes. Whereas unicellular networks have been studied extensively, metazoan transcription regulatory networks remain largely unexplored. Caenorhabditis elegans provides a powerful model to study such metazoan networks because its genome is completely sequenced and many functional genomic tools are available. While C. elegans gene predictions have undergone continuous refinement, this is not true for the annotation of functional transcription factors. The comprehensive identification of transcription factors is essential for the systematic mapping of transcription regulatory networks because it enables the creation of physical transcription factor resources that can be used in assays to map interactions between transcription factors and their target genes. Results By computational searches and extensive manual curation, we have identified a compendium of 934 transcription factor genes (referred to as wTF2.0). We find that manual curation drastically reduces the number of both false positive and false negative transcription factor predictions. We discuss how transcription factor splice variants and dimer formation may affect the total number of functional transcription factors. In contrast to mouse transcription factor genes, we find that C. elegans transcription factor genes do not undergo significantly more splicing than other genes. This difference may contribute to differences in organism complexity. We identify candidate redundant worm transcription factor genes and orthologous worm and human transcription factor pairs. Finally, we discuss how wTF2.0 can be used together with physical transcription factor clone resources to facilitate the systematic mapping of C. elegans transcription regulatory networks. Conclusion wTF2.0 provides a starting point to decipher the transcription regulatory networks that control metazoan development and function

    Vascular Growth in the Fetal Lung

    Get PDF
    corecore