18,465 research outputs found

    Microstructural enrichment functions based on stochastic Wang tilings

    Full text link
    This paper presents an approach to constructing microstructural enrichment functions to local fields in non-periodic heterogeneous materials with applications in Partition of Unity and Hybrid Finite Element schemes. It is based on a concept of aperiodic tilings by the Wang tiles, designed to produce microstructures morphologically similar to original media and enrichment functions that satisfy the underlying governing equations. An appealing feature of this approach is that the enrichment functions are defined only on a small set of square tiles and extended to larger domains by an inexpensive stochastic tiling algorithm in a non-periodic manner. Feasibility of the proposed methodology is demonstrated on constructions of stress enrichment functions for two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first revie

    Positive trigonometric polynomials for strong stability of difference equations

    Full text link
    We follow a polynomial approach to analyse strong stability of linear difference equations with rationally independent delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5

    All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n-1

    Full text link
    We construct all solvable Lie algebras with a specific n-dimensional nilradical n_(n,2) (of degree of nilpotency (n-1) and with an (n-2)-dimensional maximal Abelian ideal). We find that for given n such a solvable algebra is unique up to isomorphisms. Using the method of moving frames we construct a basis for the Casimir invariants of the nilradical n_(n,2). We also construct a basis for the generalized Casimir invariants of its solvable extension s_(n+1) consisting entirely of rational functions of the chosen invariants of the nilradical.Comment: 19 pages; added references, changes mainly in introduction and conclusions, typos corrected; submitted to J. Phys. A, version to be publishe

    Linear representation of energy-dependent Hamiltonians

    Get PDF
    Effective (i.e., subspace-constrained) Hamiltonians become, by construction, energy-dependent while all the energy-dependent forces prove non-linear because the energy itself is merely an eigenvalue of the Hamiltonian H. One of the most natural resolutions of such a puzzle is proposed via an introduction of teh two separate linear representatives of the respective right and left action of H=H(E). Both the new energy-independent operators are non-Hermitian so that the formalism admits a natural extension to non-Hermitian initial H(E)s.Comment: 14 pages - first half of the material to be presented during 2nd International Workshop on Pseudo-Hermitian Hamiltonians in June (cf. http://www.ujf.cas.cz/PTsymmetry

    Identification of observables in quantum toboggans

    Full text link
    Quantum systems with real energies generated by an apparently non-Hermitian Hamiltonian may re-acquire the consistent probabilistic interpretation via an ad hoc metric which specifies the set of observables in the updated Hilbert space of states. The recipe is extended here to quantum toboggans. In the first step the tobogganic integration path is rectified and the Schroedinger equation is given the generalized eigenvalue-problem form. In the second step the general double-series representation of the eligible metric operators is derived.Comment: 25 p
    • …
    corecore