153 research outputs found

    A note on circular chromatic number of graphs with large girth and similar problems

    Full text link
    In this short note, we extend the result of Galluccio, Goddyn, and Hell, which states that graphs of large girth excluding a minor are nearly bipartite. We also prove a similar result for the oriented chromatic number, from which follows in particular that graphs of large girth excluding a minor have oriented chromatic number at most 55, and for the ppth chromatic number χp\chi_p, from which follows in particular that graphs GG of large girth excluding a minor have χp(G)≤p+2\chi_p(G)\leq p+2

    Uniquely D-colourable digraphs with large girth

    Full text link
    Let C and D be digraphs. A mapping f:V(D)→V(C)f:V(D)\to V(C) is a C-colouring if for every arc uvuv of D, either f(u)f(v)f(u)f(v) is an arc of C or f(u)=f(v)f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely C-colourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphism of C. We prove that if a digraph D is not C-colourable, then there exist digraphs of arbitrarily large girth that are D-colourable but not C-colourable. Moreover, for every digraph D that is uniquely D-colourable, there exists a uniquely D-colourable digraph of arbitrarily large girth. In particular, this implies that for every rational number r≥1r\geq 1, there are uniquely circularly r-colourable digraphs with arbitrarily large girth.Comment: 21 pages, 0 figures To be published in Canadian Journal of Mathematic

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Defective Coloring on Classes of Perfect Graphs

    Full text link
    In Defective Coloring we are given a graph GG and two integers χd\chi_d, Δ∗\Delta^* and are asked if we can χd\chi_d-color GG so that the maximum degree induced by any color class is at most Δ∗\Delta^*. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd\chi_d, Δ∗\Delta^* is set to the smallest possible fixed value that does not trivialize the problem (χd=2\chi_d = 2 or Δ∗=1\Delta^* = 1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd\chi_d or Δ∗\Delta^* is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd\chi_d and Δ∗\Delta^* are unbounded

    D-colorable digraphs with large girth

    Get PDF
    In 1959 Paul Erdos (Graph theory and probability, Canad. J. Math. 11 (1959), 34-38) famously proved, nonconstructively, that there exist graphs that have both arbitrarily large girth and arbitrarily large chromatic number. This result, along with its proof, has had a number of descendants (D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004), 227-240; B. Bollobas and N. Sauer, Uniquely colourable graphs with large girth, Canad. J. Math. 28 (1976), 1340-1344; J. Nesetril and X. Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B 90 (2004), 161-172; X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996), 33-41) that have extended and generalized the result while strengthening the techniques used to achieve it. We follow the lead of Xuding Zhu (op. cit.) who proved that, for a suitable graph H, there exist graphs of arbitrarily large girth that are uniquely H-colorable. We establish an analogue of Zhu\u27s results in a digraph setting. Let C and D be digraphs. A mapping f:V(D)&rarr V(C) is a C-coloring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colorable if it admits a C-coloring and that D is uniquely C-colorable if it is surjectively C-colorable and any two C-colorings of D differ by an automorphism of C. We prove that if D is a digraph that is not C-colorable, then there exist graphs of arbitrarily large girth that are D-colorable but not C-colorable. Moreover, for every digraph D that is uniquely D-colorable, there exists a uniquely D-colorable digraph of arbitrarily large girth

    Digraphs and homomorphisms: Cores, colorings, and constructions

    Get PDF
    A natural digraph analogue of the graph-theoretic concept of an `independent set\u27 is that of an acyclic set, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets

    Parameterized (Approximate) Defective Coloring

    Get PDF
    In Defective Coloring we are given a graph G=(V,E) and two integers chi_d,Delta^* and are asked if we can partition V into chi_d color classes, so that each class induces a graph of maximum degree Delta^*. We investigate the complexity of this generalization of Coloring with respect to several well-studied graph parameters, and show that the problem is W-hard parameterized by treewidth, pathwidth, tree-depth, or feedback vertex set, if chi_d=2. As expected, this hardness can be extended to larger values of chi_d for most of these parameters, with one surprising exception: we show that the problem is FPT parameterized by feedback vertex set for any chi_d != 2, and hence 2-coloring is the only hard case for this parameter. In addition to the above, we give an ETH-based lower bound for treewidth and pathwidth, showing that no algorithm can solve the problem in n^{o(pw)}, essentially matching the complexity of an algorithm obtained with standard techniques. We complement these results by considering the problem\u27s approximability and show that, with respect to Delta^*, the problem admits an algorithm which for any epsilon>0 runs in time (tw/epsilon)^{O(tw)} and returns a solution with exactly the desired number of colors that approximates the optimal Delta^* within (1+epsilon). We also give a (tw)^{O(tw)} algorithm which achieves the desired Delta^* exactly while 2-approximating the minimum value of chi_d. We show that this is close to optimal, by establishing that no FPT algorithm can (under standard assumptions) achieve a better than 3/2-approximation to chi_d, even when an extra constant additive error is also allowed
    • …
    corecore