46 research outputs found

    Code-division multiplexing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 395-404).(cont.) counterpart. Among intra-cell orthogonal schemes, we show that the most efficient broadcast signal is a linear superposition of many binary orthogonal waveforms. The information set is also binary. Each orthogonal waveform is generated by modulating a periodic stream of finite-length chip pulses with a receiver-specific signature code that is derived from a special class of binary antipodal, superimposed recursive orthogonal code sequences. With the imposition of practical pulse shapes for carrier modulation, we show that multi-carrier format using cosine functions has higher bandwidth efficiency than the single-carrier format, even in an ideal Gaussian channel model. Each pulse is shaped via a prototype baseband filter such that when the demodulated signal is detected through a baseband matched filter, the resulting output samples satisfy the Generalized Nyquist criterion. Specifically, we propose finite-length, time overlapping orthogonal pulse shapes that are g-Nyquist. They are derived from extended and modulated lapped transforms by proving the equivalence between Perfect Reconstruction and Generalized Nyquist criteria. Using binary data modulation format, we measure and analyze the accuracy of various Gaussian approximation methods for spread-spectrum modulated (SSM) signalling ...We study forward link performance of a multi-user cellular wireless network. In our proposed cellular broadcast model, the receiver population is partitioned into smaller mutually exclusive subsets called cells. In each cell an autonomous transmitter with average transmit power constraint communicates to all receivers in its cell by broadcasting. The broadcast signal is a multiplex of independent information from many remotely located sources. Each receiver extracts its desired information from the composite signal, which consists of a distorted version of the desired signal, interference from neighboring cells and additive white Gaussian noise. Waveform distortion is caused by time and frequency selective linear time-variant channel that exists between every transmitter-receiver pair. Under such system and design constraints, and a fixed bandwidth for the entire network, we show that the most efficient resource allocation policy for each transmitter based on information theoretic measures such as channel capacity, simultaneously achievable rate regions and sum-rate is superposition coding with successive interference cancellation. The optimal policy dominates over its sub-optimal alternatives at the boundaries of the capacity region. By taking into account practical constraints such as finite constellation sets, frequency translation via carrier modulation, pulse shaping and real-time signal processing and decoding of finite-length waveforms and fairness in rate distribution, we argue that sub-optimal orthogonal policies are preferred. For intra-cell multiplexing, all orthogonal schemes based on frequency, time and code division are equivalent. For inter-cell multiplexing, non-orthogonal code-division has a larger capacity than its orthogonalby Ceilidh Hoffmann.Ph.D

    Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation

    No full text

    TDRSS telecommunications study. Phase 1: Final report

    Get PDF
    A parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS) was performed. Emphasis was placed on maximizing support capability provided to the user while minimizing impact on the user spacecraft. This study evaluates the present TDRSS configuration as presented in the TDRSS Definition Phase Study Report, December 1973 to determine potential changes for improving the overall performance. In addition, it provides specifications of the user transponder equipment to be used in the TDRSS

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems
    corecore