11,223 research outputs found

    Algebraic List-decoding of Subspace Codes

    Full text link
    Subspace codes were introduced in order to correct errors and erasures for randomized network coding, in the case where network topology is unknown (the noncoherent case). Subspace codes are indeed collections of subspaces of a certain vector space over a finite field. The Koetter-Kschischang construction of subspace codes are similar to Reed-Solomon codes in that codewords are obtained by evaluating certain (linearized) polynomials. In this paper, we consider the problem of list-decoding the Koetter-Kschischang subspace codes. In a sense, we are able to achieve for these codes what Sudan was able to achieve for Reed-Solomon codes. In order to do so, we have to modify and generalize the original Koetter-Kschischang construction in many important respects. The end result is this: for any integer LL, our list-LL decoder guarantees successful recovery of the message subspace provided that the normalized dimension of the error is at most Lβˆ’L(L+1)2R L - \frac{L(L+1)}{2}R where RR is the normalized packet rate. Just as in the case of Sudan's list-decoding algorithm, this exceeds the previously best known error-correction radius 1βˆ’R1-R, demonstrated by Koetter and Kschischang, for low rates RR

    Optimal rate list decoding via derivative codes

    Full text link
    The classical family of [n,k]q[n,k]_q Reed-Solomon codes over a field \F_q consist of the evaluations of polynomials f \in \F_q[X] of degree <k< k at nn distinct field elements. In this work, we consider a closely related family of codes, called (order mm) {\em derivative codes} and defined over fields of large characteristic, which consist of the evaluations of ff as well as its first mβˆ’1m-1 formal derivatives at nn distinct field elements. For large enough mm, we show that these codes can be list-decoded in polynomial time from an error fraction approaching 1βˆ’R1-R, where R=k/(nm)R=k/(nm) is the rate of the code. This gives an alternate construction to folded Reed-Solomon codes for achieving the optimal trade-off between rate and list error-correction radius. Our decoding algorithm is linear-algebraic, and involves solving a linear system to interpolate a multivariate polynomial, and then solving another structured linear system to retrieve the list of candidate polynomials ff. The algorithm for derivative codes offers some advantages compared to a similar one for folded Reed-Solomon codes in terms of efficient unique decoding in the presence of side information.Comment: 11 page

    Linear-algebraic list decoding of folded Reed-Solomon codes

    Full text link
    Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and error-correction capability: specifically, for any \eps > 0, the author and Rudra (2006,08) presented an n^{O(1/\eps)} time algorithm to list decode appropriate folded RS codes of rate RR from a fraction 1-R-\eps of errors. The algorithm is based on multivariate polynomial interpolation and root-finding over extension fields. It was noted by Vadhan that interpolating a linear polynomial suffices if one settles for a smaller decoding radius (but still enough for a statement of the above form). Here we give a simple linear-algebra based analysis of this variant that eliminates the need for the computationally expensive root-finding step over extension fields (and indeed any mention of extension fields). The entire list decoding algorithm is linear-algebraic, solving one linear system for the interpolation step, and another linear system to find a small subspace of candidate solutions. Except for the step of pruning this subspace, the algorithm can be implemented to run in {\em quadratic} time. The theoretical drawback of folded RS codes are that both the decoding complexity and proven worst-case list-size bound are n^{\Omega(1/\eps)}. By combining the above idea with a pseudorandom subset of all polynomials as messages, we get a Monte Carlo construction achieving a list size bound of O(1/\eps^2) which is quite close to the existential O(1/\eps) bound (however, the decoding complexity remains n^{\Omega(1/\eps)}). Our work highlights that constructing an explicit {\em subspace-evasive} subset that has small intersection with low-dimensional subspaces could lead to explicit codes with better list-decoding guarantees.Comment: 16 pages. Extended abstract in Proc. of IEEE Conference on Computational Complexity (CCC), 201
    • …
    corecore