67,703 research outputs found

    Model reduction of controlled Fokker--Planck and Liouville-von Neumann equations

    Full text link
    Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples

    Moment free energies for polydisperse systems

    Full text link
    A polydisperse system contains particles with at least one attribute σ\sigma (such as particle size in colloids or chain length in polymers) which takes values in a continuous range. It therefore has an infinite number of conserved densities, described by a density {\em distribution} ρ(σ)\rho(\sigma). The free energy depends on all details of ρ(σ)\rho(\sigma), making the analysis of phase equilibria in such systems intractable. However, in many (especially mean-field) models the {\em excess} free energy only depends on a finite number of (generalized) moments of ρ(σ)\rho(\sigma); we call these models truncatable. We show, for these models, how to derive approximate expressions for the {\em total} free energy which only depend on such moment densities. Our treatment unifies and explores in detail two recent separate proposals by the authors for the construction of such moment free energies. We show that even though the moment free energy only depends on a finite number of density variables, it gives the same spinodals and critical points as the original free energy and also correctly locates the onset of phase coexistence. Results from the moment free energy for the coexistence of two or more phases occupying comparable volumes are only approximate, but can be refined arbitrarily by retaining additional moment densities. Applications to Flory-Huggins theory for length-polydisperse homopolymers, and for chemically polydisperse copolymers, show that the moment free energy approach is computationally robust and gives new geometrical insights into the thermodynamics of polydispersity.Comment: RevTeX, 43 pages including figure

    Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties

    Full text link
    Based on a numerical ab initio study, we discuss a structure model for a broad boron sheet, which is the analog of a single graphite sheet, and the precursor of boron nanotubes. The sheet has linear chains of sp hybridized sigma bonds lying only along its armchair direction, a high stiffness, and anisotropic bonds properties. The puckering of the sheet is explained as a mechanism to stabilize the sp sigma bonds. The anisotropic bond properties of the boron sheet lead to a two-dimensional reference lattice structure, which is rectangular rather than triangular. As a consequence the chiral angles of related boron nanotubes range from 0 to 90 degrees. Given the electronic properties of the boron sheets, we demonstrate that all of the related boron nanotubes are metallic, irrespective of their radius and chiral angle, and we also postulate the existence of helical currents in ideal chiral nanotubes. Furthermore, we show that the strain energy of boron nanotubes will depend on their radii, as well as on their chiral angles. This is a rather unique property among nanotubular systems, and it could be the basis of a different type of structure control within nanotechnology.Comment: 16 pages, 17 figures, 2 tables, Versions: v1=preview, v2=first final, v3=minor corrections, v4=document slightly reworke

    emgr - The Empirical Gramian Framework

    Full text link
    System Gramian matrices are a well-known encoding for properties of input-output systems such as controllability, observability or minimality. These so-called system Gramians were developed in linear system theory for applications such as model order reduction of control systems. Empirical Gramian are an extension to the system Gramians for parametric and nonlinear systems as well as a data-driven method of computation. The empirical Gramian framework - emgr - implements the empirical Gramians in a uniform and configurable manner, with applications such as Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter identification and combined state and parameter reduction

    A Modular Regularized Variational Multiscale Proper Orthogonal Decomposition for Incompressible Flows

    Full text link
    In this paper, we propose, analyze and test a post-processing implementation of a projection-based variational multiscale (VMS) method with proper orthogonal decomposition (POD) for the incompressible Navier-Stokes equations. The projection-based VMS stabilization is added as a separate post-processing step to the standard POD approximation, and since the stabilization step is completely decoupled, the method can easily be incorporated into existing codes, and stabilization parameters can be tuned independent from the time evolution step. We present a theoretical analysis of the method, and give results for several numerical tests on benchmark problems which both illustrate the theory and show the proposed method's effectiveness
    corecore