16 research outputs found

    New constructions of optimal (r,ฮด)(r,\delta)-LRCs via good polynomials

    Full text link
    Locally repairable codes (LRCs) are a class of erasure codes that are widely used in distributed storage systems, which allow for efficient recovery of data in the case of node failures or data loss. In 2014, Tamo and Barg introduced Reed-Solomon-like (RS-like) Singleton-optimal (r,ฮด)(r,\delta)-LRCs based on polynomial evaluation. These constructions rely on the existence of so-called good polynomial that is constant on each of some pairwise disjoint subsets of Fq\mathbb{F}_q. In this paper, we extend the aforementioned constructions of RS-like LRCs and proposed new constructions of (r,ฮด)(r,\delta)-LRCs whose code length can be larger. These new (r,ฮด)(r,\delta)-LRCs are all distance-optimal, namely, they attain an upper bound on the minimum distance, that will be established in this paper. This bound is sharper than the Singleton-type bound in some cases owing to the extra conditions, it coincides with the Singleton-type bound for certain cases. Combing these constructions with known explicit good polynomials of special forms, we can get various explicit Singleton-optimal (r,ฮด)(r,\delta)-LRCs with new parameters, whose code lengths are all larger than that constructed by the RS-like (r,ฮด)(r,\delta)-LRCs introduced by Tamo and Barg. Note that the code length of classical RS codes and RS-like LRCs are both bounded by the field size. We explicitly construct the Singleton-optimal (r,ฮด)(r,\delta)-LRCs with length n=qโˆ’1+ฮดn=q-1+\delta for any positive integers r,ฮดโ‰ฅ2r,\delta\geq 2 and (r+ฮดโˆ’1)โˆฃ(qโˆ’1)(r+\delta-1)\mid (q-1). When ฮด\delta is proportional to qq, it is asymptotically longer than that constructed via elliptic curves whose length is at most q+2qq+2\sqrt{q}. Besides, it allows more flexibility on the values of rr and ฮด\delta

    Locally Recoverable Codes From Algebraic Curves

    Get PDF
    Locally recoverable (LRC) codes have the property that erased coordinates can be recovered by retrieving a small amount of the information contained in the entire codeword. An LRC code achieves this by making each coordinate a function of a small number of other coordinates. Since some algebraic constructions of LRC codes require that nโ‰คqn \leq q, where nn is the length and qq is the size of the field, it is natural to ask whether we can generate codes over a small field from a code over an extension. Trace codes achieve this by taking the field trace of every coordinate of a code. In this thesis, we give necessary and sufficient conditions for when the local recoverability property is retained when taking the trace of certain LRC codes. This thesis also explores a subfamily of LRC codes with hierarchical locality (H-LRC) which have tiers of recoverability. We provide a general construction of codes with 2 levels of hierarchy from maps between algebraic curves and present several families from quotients of curves by a subgroup of automorphisms. We consider specific examples from rational, elliptic, Kummer, and Artin-Schrier curves and examples of asymptotically good families of H-LRC codes from curves related to the Garcia-Stichtenoth tower

    Construction of optimal locally recoverable codes and connection with hypergraph

    Get PDF
    Locally recoverable codes are a class of block codes with an additional property called locality. A locally recoverable code with locality r can recover a symbol by reading at most r other symbols. Recently, it was discovered by several authors that a q-ary optimal locally recoverable code, i.e., a locally recoverable code achieving the Singleton-type bound, can have length much bigger than q + 1. In this paper, we present both the upper bound and the lower bound on the length of optimal locally recoverable codes. Our lower bound improves the best known result in [12] for all distance d โ‰ฅ 7. This result is built on the observation of the parity-check matrix equipped with the Vandermonde structure. It turns out that a parity-check matrix with the Vandermonde structure produces an optimal locally recoverable code if it satisfies a certain expansion property for subsets of Fq. To our surprise, this expansion property is then shown to be equivalent to a well-studied problem in extremal graph theory. Our upper bound is derived by an refined analysis of the arguments of Theorem 3.3 in [6]

    ์ƒˆ๋กœ์šด ์†Œ์‹ค ์ฑ„๋„์„ ์œ„ํ•œ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ ๋ฐ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ๋ฐ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ LDPC ๋ถ€ํ˜ธ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๋…ธ์ข…์„ .In this dissertation, three main contributions are given asi) new two-stage automorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes and existing LRCs, and iii) new constructions of high-rate generalized root protograph (GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered. First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure channel. Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes in the erasure channel was introduced, which has good erasure decoding performance with low decoding complexity. In this research, I propose new TS-AGDs for cyclic codes in the erasure channel by modifying the parity check matrix and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect decoding in the erasure channel, that is, the same decoding performance as the maximum likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check matrix and the submatrix inversion are also proposed and analyzed. Second, I propose new constructions of binary and ternary LRCs using cyclic codes and existing two LRCs for distributed storage system. For a primitive work, new constructions of binary and ternary LRCs using cyclic codes and their concatenation are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and 6 are optimal in terms of the upper bounds. In addition, the similar method of the binary case is applied to construct the ternary LRCs with good parameters. Also, new constructions of binary LRCs with large Hamming distance and disjoint repair groups are proposed. The proposed binary linear LRCs constructed by using existing binary LRCs are optimal or near-optimal in terms of the bound with disjoint repair group. Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic block interference and anti-jamming PR LDPC codes for follower jamming. The proposed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric channel with block interference and Nakagami-mm block fading. In these channel environments, GRP LDPC codes have good performance approaching to the theoretical limit in the channel with one block interference, where their performance is shown by the channel threshold or the channel outage probability. In the proposed design, I find base matrices using the protograph extrinsic information transfer (PEXIT) algorithm. Also, the proposed new constructions of anti-jamming partially regular LDPC codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS). For a channel environment, I suppose follower jamming with random dwell time and Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) modulation. For a coding perspective, an anti-jamming LDPC codes against follower jamming are introduced. In order to optimize the jamming environment, the partially regular structure and corresponding density evolution schemes are used. A series of simulations show that the proposed codes outperforms the 802.16e standard in the presence of follower noise jamming.์ด ๋…ผ๋ฌธ์—์„œ๋Š”, i) ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ , ii) ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ(LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•, ๋ฐ iii) ๋ธ”๋ก ๊ฐ„์„ญ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ๊ณ ๋ถ€ํšจ์œจ์˜ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„(generalized root protograph, GRP) LDPC ๋ถ€ํ˜ธ ๋ฐ ์ถ”์  ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ํ•ญ์žฌ๋ฐ ๋ถ€๋ถ„ ๊ท ์ผ (anti-jamming paritally regular, AJ-PR) LDPC ๋ถ€ํ˜ธ๊ฐ€ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ ํ˜น์€ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๋“ฑ์˜ ์‘์šฉ์œผ๋กœ ์ธํ•ด ์†Œ์‹ค ์ฑ„๋„์—์„œ์˜ ์˜ค๋ฅ˜ ์ •์ • ๋ถ€ํ˜ธ ๊ธฐ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๋ณตํ˜ธ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋†’์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๊ธด ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์‹ค์šฉ์ ์ด์ง€ ๋ชปํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‚ฎ์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋Š” ์ˆœํ™˜ ๋ถ€ํ˜ธ์—์„œ ์ด๋‹จ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒจ๋ฆฌํ‹ฐ ๊ฒ€์‚ฌ ํ–‰๋ ฌ์„ ๋ณ€ํ˜•ํ•˜๊ณ , ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ณตํ˜ธ๊ธฐ๋Š” perfect ๋ถ€ํ˜ธ, BCH ๋ถ€ํ˜ธ ๋ฐ ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ ๋ถ„๋ฆฌ (maximum distance separable, MDS) ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด์„œ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ˆ˜์น˜ ๋ถ„์„์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ๋ณตํ˜ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ณด๋‹ค ๋‚ฎ์€ ๋ณต์žก๋„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ช‡๋ช‡์˜ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ตœ๋Œ€ ์šฐ๋„ (maximal likelihood, ML)๊ณผ ๊ฐ™์€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์ž„์„ ๋ณด์ธ๋‹ค. MDS ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ, ํ™•์žฅ๋œ ํŒจ๋ฆฌํ‹ฐ๊ฒ€์‚ฌ ํ–‰๋ ฌ ๋ฐ ์ž‘์€ ํฌ๊ธฐ์˜ ํ–‰๋ ฌ์˜ ์—ญ์—ฐ์‚ฐ์„ ํ™œ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ (LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋กœ์„œ, ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์—ฐ์ ‘์„ ํ™œ์šฉํ•œ ์ด์ง„ ๋ฐ ์‚ผ์ง„ LRC ์„ค๊ณ„ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ตœ์†Œ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ๊ฐ€ 4,5, ํ˜น์€ 6์ธ ์ œ์•ˆ๋œ ์ด์ง„ LRC ์ค‘ ์ผ๋ถ€๋Š” ์ƒํ•œ๊ณผ ๋น„๊ตํ•ด ๋ณด์•˜์„ ๋•Œ ์ตœ์  ์„ค๊ณ„์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋น„์Šทํ•œ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ข‹์€ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์‚ผ์ง„ LRC๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ์™ธ์— ๊ธฐ์กด์˜ LRC๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํฐ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด LRC๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ LRC๋Š” ๋ถ„๋ฆฌ๋œ ๋ณต๊ตฌ ๊ตฐ ์กฐ๊ฑด์—์„œ ์ตœ์ ์ด๊ฑฐ๋‚˜ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, GRP LDPC ๋ถ€ํ˜ธ๋Š” Nakagami-mm ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ธ”๋ก ๊ฐ„์„ญ์ด ์žˆ๋Š” ๋‘ ์ƒํƒœ์˜ ์ด์ง„ ๋Œ€์นญ ์ฑ„๋„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œ GRP LDPC ๋ถ€ํ˜ธ๋Š” ํ•˜๋‚˜์˜ ๋ธ”๋ก ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ, ์ด๋ก ์  ์„ฑ๋Šฅ์— ๊ฐ€๊นŒ์šด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก  ๊ฐ’์€ ์ฑ„๋„ ๋ฌธํ„ฑ๊ฐ’์ด๋‚˜ ์ฑ„๋„ outage ํ™•๋ฅ ์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„์—์„œ๋Š”, ๋ณ€ํ˜•๋œ PEXIT ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์ดˆ ํ–‰๋ ฌ์„ ์„ค๊ณ„ํ•œ๋‹ค. ๋˜ํ•œ AJ-PR LDPC ๋ถ€ํ˜ธ๋Š” ์ฃผํŒŒ์ˆ˜ ๋„์•ฝ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ฑ„๋„ ํ™˜๊ฒฝ์œผ๋กœ MFSK ๋ณ€๋ณต์กฐ ๋ฐฉ์‹์˜ ๋ ˆ์ผ๋ฆฌ ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ฌด์ž‘์œ„ํ•œ ์ง€์† ์‹œ๊ฐ„์ด ์žˆ๋Š” ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์žฌ๋ฐ ํ™˜๊ฒฝ์œผ๋กœ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ๋ถ€๋ถ„ ๊ท ์ผ ๊ตฌ์กฐ ๋ฐ ํ•ด๋‹น๋˜๋Š” ๋ฐ€๋„ ์ง„ํ™” (density evolution, DE) ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋œ๋‹ค. ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ ๋ถ€ํ˜ธ๊ฐ€ 802.16e์— ์‚ฌ์šฉ๋˜์—ˆ๋˜ LDPC ๋ถ€ํ˜ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 1.1 Background 1.2 Overview of Dissertation 1.3 Notations 2 Preliminaries 2.1 IED and AGD for Erasure Channel 2.1.1 Iterative Erasure Decoder 2.1.1 Automorphism Group Decoder 2.2. Binary Locally Repairable Codes for Distributed Storage System 2.2.1 Bounds and Optimalities of Binary LRCs 2.2.2 Existing Optimal Constructions of Binary LRCs 2.3 Channels with Block Interference and Jamming 2.3.1 Channels with Block Interference 2.3.2 Channels with Jamming with MFSK and FHSS Environment. 3 New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel 3.1 Some Definitions 3.2 Modification of Parity Check Matrix and Two-Stage AGD 3.2.1 Modification of the Parity Check Matrix 3.2.2 A New Two-Stage AGD 3.2.3 Analysis of Modification Criteria for the Parity Check Matrix 3.2.4 Analysis of Decoding Complexity of TS-AGD 3.2.5 Numerical Analysis for Some Cyclic Codes 3.3 Construction of Parity Check Matrix and TS-AGD for Cyclic MDS Codes 3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes . 3.3.2 Proposed TS-AGD for Cyclic MDS Codes 3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix for Cyclic MDS Codes 3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes . . 4 New Constructions of Binary and Ternary LRCs Using Cyclic Codes and Existing LRCs 4.1 Constructions of Binary LRCs Using Cyclic Codes 4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes 4.3 Constructions of Binary LRCs with Disjoint Repair Groups Using Existing LRCs 4.4 New Constructions of Binary Linear LRCs with d โ‰ฅ 8 Using Existing LRCs 5 New Constructions of Generalized RP LDPC Codes for Block Interference and Partially Regular LDPC Codes for Follower Jamming 5.1 Generalized RP LDPC Codes for a Nonergodic BI 5.1.1 Minimum Blockwise Hamming Weight 5.1.2 Construction of GRP LDPC Codes 5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes 5.2.1 Asymptotic Analysis of LDPC Codes 5.2.2 Numerical Analysis of Finite-Length LDPC Codes 5.3 Follower Noise Jamming with Fixed Scan Speed 5.4 Anti-Jamming Partially Regular LDPC Codes for Follower Noise Jamming 5.4.1 Simplified Channel Model and Corresponding Density Evolution 5.4.2 Construction of AJ-PR-LDPC Codes Based on DE 5.5 Numerical Analysis of AJ-PR LDPC Codes 6 Conclusion Abstract (In Korean)Docto
    corecore