504 research outputs found

    Mobility prediction and multicasting in wireless networks : performance and analysis

    Get PDF
    Handoff is a call handling mechanism that is invoked when a mobile node moves from one cell to another. Such movement may lead to degradation in performance for wireless networks as a result of packet losses. A promising technique proposed in this thesis is to apply multicasting techniques aided by mobility prediction in order to improve handoff performance. In this thesis, we present a method that uses a Grey model for mobility prediction and a fuzzy logic controller that has been fine-tuned using evolutionary algorithms in order to improve prediction accuracy. We also compare the self-tuning algorithm with two evolutionary algorithms in terms of accuracy and their convergence times. Our proposed method takes into account signal strengths from the base stations and predicts the signal strength of the next candidate base station in order to provide improved handover performance. The primary decision for mobility prediction is the accurate prediction of signal strengths obtained from the base stations and remove any unwanted errors in the prediction using suitable optimisation techniques. Furthermore, the model includes the procedures of fine-tuning the predicted data using fuzzy parameters. We also propose suitable multicasting algorithms to minimise the reservation of overall network resource requirements during handoff with the mobility prediction information. To be able to efficiently solve the problem, the situation is modelled using a multicast tree that is defined to maintain connectivity with the mobile node, whilst ensuring bandwidth guarantees and a minimum hop-count. In this approach, we have tried to solve the problem by balancing two objectives through putting a weight on each of two costs. We provide a detailed description of an algorithm to implement join and prune mechanisms, which will help to build an optimal multicast tree with QoS requirements during handoff as well as incorporating dynamic changes in the positions of mobile nodes. An analysis of how mobility prediction helps in the selection of potential Access Routers (AR) with QoS requirements - which affects the multicast group size and bandwidth cost of the multicast tree -- is presented. The proposed technique tries to minimise the number of multicast tree join and prune operations. Our results show that the expected size of the multicast group increases linearly with an increase in the number of selected destination AR's for multicast during handoff. We observe that the expected number of joins and prunes from the multicast tree increases with group size. A special simulation model was developed to demonstrate both homogeneous and heterogeneous handoff which is an emerging requirement for fourth generation mobile networks. The model incorporates our mobility prediction model for heterogeneous handoff between the Wireless LAN and a cellular network. The results presented in this thesis for mobility prediction, multicasting techniques and heterogeneous handoff include proposed algorithms and models which aid in the understanding, analysing and reducing of overheads during handoff

    Cost Sharing Games for Energy-Efficient Multi-Hop Broadcast in Wireless Networks

    Full text link
    We study multi-hop broadcast in wireless networks with one source node and multiple receiving nodes. The message flow from the source to the receivers can be modeled as a tree-graph, called broadcast-tree. The problem of finding the minimum-power broadcast-tree (MPBT) is NP-complete. Unlike most of the existing centralized approaches, we propose a decentralized algorithm, based on a non-cooperative cost-sharing game. In this game, every receiving node, as a player, chooses another node of the network as its respective transmitting node for receiving the message. Consequently, a cost is assigned to the receiving node based on the power imposed on its chosen transmitting node. In our model, the total required power at a transmitting node consists of (i) the transmit power and (ii) the circuitry power needed for communication hardware modules. We develop our algorithm using the marginal contribution (MC) cost-sharing scheme and show that the optimum broadcast-tree is always a Nash equilibrium (NE) of the game. Simulation results demonstrate that our proposed algorithm outperforms conventional algorithms for the MPBT problem. Besides, we show that the circuitry power, which is usually ignored by existing algorithms, significantly impacts the energy-efficiency of the network.Comment: 33 pages including references, figures, and table

    Improving Network Reliability: Analysis, Methodology, and Algorithms

    Get PDF
    The reliability of networking and communication systems is vital for the nation's economy and security. Optical and cellular networks have become a critical infrastructure and are indispensable in emergency situations. This dissertation outlines methods for analyzing such infrastructures in the presence of catastrophic failures, such as a hurricane, as well as accidental failures of one or more components. Additionally, it presents a method for protecting against the loss of a single link in a multicast network along with a technique that enables wireless clients to efficiently recover lost data sent by their source through collaborative information exchange. Analysis of a network's reliability during a natural disaster can be assessed by simulating the conditions in which it is expected to perform. This dissertation conducts the analysis of a cellular infrastructure in the aftermath of a hurricane through Monte-Carlo sampling and presents alternative topologies which reduce resulting loss of calls. While previous research on restoration mechanisms for large-scale networks has mostly focused on handling the failures of single network elements, this dissertation examines the sampling methods used for simulating multiple failures. We present a quick method of nding a lower bound on a network's data loss through enumeration of possible cuts as well as an efficient method of nding a tighter lower bound through genetic algorithms leveraging the niching technique. Mitigation of data losses in a multicast network can be achieved by adding redundancy and employing advanced coding techniques. By using Maximum Rank Distance (MRD) codes at the source, a provider can create a parity packet which is e ectively linearly independent from the source packets such that all packets may be transmitted through the network using the network coding technique. This allows all sinks to recover all of the original data even with the failure of an edge within the network. Furthermore, this dissertation presents a method that allows a group of wireless clients to cooperatively recover from erasures (e.g., due to failures) by using the index coding techniques

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • …
    corecore