20,059 research outputs found

    Climate Resilient & Equitable Water Systems Capital Scan

    Get PDF
    Climate change is affecting water supply, water management and the health of communities in U.S. cities. Changes in the timing, frequency and intensity of precipitation are placing stress on the built and natural systems that provide fresh water, manage storm water, and treat wastewater. Droughts are shrinking the water supply; heavy rainfall overburdens storm water systems, causing flooding in homes and neighborhoods. Low-income people and communities of color are often the most vulnerable to climate change, living in low-lying areas and lacking the resources to adapt and cope with challenges associated with these patterns.The cumulative impact of climate change on water resources not only leads to a reduction in water quality and the destruction of homes and property, but it can also be a threat to public health, force relocation of communities and cause economic harm.The vision of Kresge's Environment Program is to help communities build resilience in the face of climate change. We believe that cities are central to action on climate change and equity must be a fundamental part of our work in climate adaptation, climate mitigation and building social cohesion

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    Functional brain networks before the onset of psychosis : a prospective fMRI study with graph theoretical analysis

    Get PDF
    Individuals with an at-risk mental state (ARMS) have a risk of developing a psychotic disorder significantly greater than the general population. However, it is not currently possible to predict which ARMS individuals will develop psychosis from clinical assessment alone. Comparison of ARMS subjects who do, and do not, develop psychosis can reveal which factors are critical for the onset of illness. In the present study, 37 patients with an ARMS were followed clinically at least 24 months subsequent to initial referral. Functional MRI data were collected at the beginning of the follow-up period during performance of an executive task known to recruit frontal lobe networks and to be impaired in psychosis. Graph theoretical analysis was used to compare the organization of a functional brain network in ARMS patients who developed a psychotic disorder following the scan (ARMS-T) to those who did not become ill during the same follow-up period (ARMS-NT) and aged-matched controls. The global properties of each group's representative network were studied (density, efficiency, global average path length) as well as regionally-specific contributions of network nodes to the organization of the system (degree, farness-centrality, betweenness-centrality). We focused our analysis on the dorsal anterior cingulate cortex (ACC), a region known to support executive function that is structurally and functionally impaired in ARMS patients. In the absence of between-group differences in global network organization, we report a significant reduction in the topological centrality of the ACC in the ARMS-T group relative to both ARMS-NT and controls. These results provide evidence that abnormalities in the functional organization of the brain predate the onset of psychosis, and suggest that loss of ACC topological centrality is a potential biomarker for transition to psychosis

    VIRTUALIZATION OF CLOSED-LOOP SENSOR NETWORKS

    Get PDF
    The existing closed-loop sensor networks are based on architectures that are designed and implemented for one specific application and require dedicated sensing and computational resources. This prevents the sharing of these networks. In this work, we propose an architecture of virtualization to allow sharing of closed-loop sensor networks. We also propose a scheduling approach that will manage requests from competing applications and evaluate their impact on system utilization against utilization achieved by more traditional, dedicated sensor networks. These algorithms are evaluated through trace-driven simulations, where the trace data is taken from CASA’s closed-loop weather radar sensor network. Results from this evaluation show that the proposed scheduling algorithms applied in a shared network result in cost savings, that are the result of being able to multiplex applications onto a single network as opposed to running each application on an dedicated sensor network
    corecore