8,191 research outputs found

    Toward impact-based monitoring of drought and its cascading hazards

    Get PDF
    Growth in satellite observations and modelling capabilities has transformed drought monitoring, offering near-real-time information. However, current monitoring efforts focus on hazards rather than impacts, and are further disconnected from drought-related compound or cascading hazards such as heatwaves, wildfires, floods and debris flows. In this Perspective, we advocate for impact-based drought monitoring and integration with broader drought-related hazards. Impact-based monitoring will go beyond top-down hazard information, linking drought to physical or societal impacts such as crop yield, food availability, energy generation or unemployment. This approach, specifically forecasts of drought event impacts, would accordingly benefit multiple stakeholders involved in drought planning, and risk and response management, with clear benefits for food and water security. Yet adoption and implementation is hindered by the absence of consistent drought impact data, limited information on local factors affecting water availability (including water demand, transfer and withdrawal), and impact assessment models being disconnected from drought monitoring tools. Implementation of impact-based drought monitoring thus requires the use of newly available remote sensors, the availability of large volumes of standardized data across drought-related fields, and the adoption of artificial intelligence to extract and synthesize physical and societal drought impacts.</p

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    ICT for Disaster Risk Management:The Academy of ICT Essentials for Government Leaders

    Get PDF

    Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery

    Get PDF
    Within water resources management, surface water area (SWA) variation plays a vital role in hydrological processes as well as in agriculture, environmental ecosystems, and ecological processes. The monitoring of long-term spatiotemporal SWA changes is even more critical within highly populated regions that have an arid or semi-arid climate, such as Iran. This paper examined variations in SWA in Iran from 1990 to 2021 using about 18,000 Landsat 5, 7, and 8 satellite images through the Google Earth Engine (GEE) cloud processing platform. To this end, the performance of twelve water mapping rules (WMRs) within remotely-sensed imagery was also evaluated. Our findings revealed that (1) methods which provide a higher separation (derived from transformed divergence (TD) and Jefferies–Matusita (JM) distances) between the two target classes (water and non-water) result in higher classification accuracy (overall accuracy (OA) and user accuracy (UA) of each class). (2) Near-infrared (NIR)-based WMRs are more accurate than short-wave infrared (SWIR)-based methods for arid regions. (3) The SWA in Iran has an overall downward trend (observed by linear regression (LR) and sequential Mann–Kendall (SQMK) tests). (4) Of the five major water basins, only the Persian Gulf Basin had an upward trend. (5) While temperature has trended upward, the precipitation and normalized difference vegetation index (NDVI), a measure of the country’s greenness, have experienced a downward trend. (6) Precipitation showed the highest correlation with changes in SWA (r = 0.69). (7) Long-term changes in SWA were highly correlated (r = 0.98) with variations in the JRC world water map

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches
    • …
    corecore