2,025 research outputs found

    SAMI: Service-Based Arbitrated Multi-Tier Infrastructure for Mobile Cloud Computing

    Get PDF
    Mobile Cloud Computing (MCC) is the state-ofthe- art mobile computing technology aims to alleviate resource poverty of mobile devices. Recently, several approaches and techniques have been proposed to augment mobile devices by leveraging cloud computing. However, long-WAN latency and trust are still two major issues in MCC that hinder its vision. In this paper, we analyze MCC and discuss its issues. We leverage Service Oriented Architecture (SOA) to propose an arbitrated multi-tier infrastructure model named SAMI for MCC. Our architecture consists of three major layers, namely SOA, arbitrator, and infrastructure. The main strength of this architecture is in its multi-tier infrastructure layer which leverages infrastructures from three main sources of Clouds, Mobile Network Operators (MNOs), and MNOs' authorized dealers. On top of the infrastructure layer, an arbitrator layer is designed to classify Services and allocate them the suitable resources based on several metrics such as resource requirement, latency and security. Utilizing SAMI facilitate development and deployment of service-based platform-neutral mobile applications.Comment: 6 full pages, accepted for publication in IEEE MobiCC'12 conference, MobiCC 2012:IEEE Workshop on Mobile Cloud Computing, Beijing, Chin

    Cloud computing security requirements: a systematic review

    Get PDF
    Many publications have dealt with various types of security requirements in cloud computing but not all types have been explored in sufficient depth. It is also hard to understand which types of requirements have been under-researched and which are most investigated. This paper's goal is to provide a comprehensive and structured overview of cloud computing security requirements and solutions. We carried out a systematic review and identified security requirements from previous publications that we classified in nine sub-areas: Access Control, Attack/Harm Detection, Non-repudiation, Integrity, Security Auditing, Physical Protection, Privacy, Recovery, and Prosecution. We found that (i) the least researched sub-areas are non-repudiation, physical protection, recovery and prosecution, and that (ii) access control, integrity and auditability are the most researched sub-areas

    Trust based Privacy Policy Enforcement in Cloud Computing

    Get PDF
    Cloud computing offers opportunities for organizations to reduce IT costs by using the computation and storage of a remote provider. Despite the benefits offered by cloud computing paradigm, organizations are still wary of delegating their computation and storage to a cloud service provider due to trust concerns. The trust issues with the cloud can be addressed by a combination of regulatory frameworks and supporting technologies. Privacy Enhancing Technologies (PET) and remote attestation provide the technologies for addressing the trust concerns. PET provides proactive measures through cryptography and selective dissemination of data to the client. Remote attestation mechanisms provides reactive measures by enabling the client to remotely verify if a provider is compromised. The contributions of this work are three fold. This thesis explores the PET landscape by studying in detail the implications of using PET in cloud architectures. The practicality of remote attestation in Software as a Service (SaaS) and Infrastructure as a Service (IaaS) scenarios is also analyzed and improvements have been proposed to the state of the art. This thesis also propose a fresh look at trust relationships in cloud computing, where a single provider changes its configuration for each client based on the subjective and dynamic trust assessments of clients. We conclude by proposing a plan for expanding on the completed work
    corecore